Development of clinical and magnetic resonance imaging-based radiomics nomograms for the differentiation of nodular fasciitis from soft tissue sarcoma

医学 列线图 磁共振成像 无线电技术 放射科 软组织肉瘤 单变量分析 筋膜炎 肉瘤 软组织 核医学 多元分析 病理 肿瘤科 内科学
作者
Chunjie Wang,Zhengyang Zhang,Yanping Dou,Yajie Liu,Bo Chen,Qing Liu,Shaowu Wang
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (9): 2578-2589 被引量:1
标识
DOI:10.1177/02841851231188473
摘要

Background Accurate differentiation of nodular fasciitis (NF) from soft tissue sarcoma (STS) before surgery is essential for the subsequent diagnosis and treatment of patients. Purpose To develop and evaluate radiomics nomograms based on clinical factors and magnetic resonance imaging (MRI) for the preoperative differentiation of NF from STS. Material and Methods This retrospective study analyzed the MRI data of 27 patients with pathologically diagnosed NF and 58 patients with STS who were randomly divided into training (n = 62) and validation (n = 23) groups. Univariate and multivariate analyses were performed to identify the clinical factors and semantic features of MRI. Radiomics analysis was applied to fat-suppressed T1-weighted (T1W-FS) images, fat-suppressed T2-weighted (T2W-FS) images, and contrast-enhanced T1-weighted (CE-T1W) images. The radiomics nomograms incorporating the radiomics signatures, clinical factors, and semantic features of MRI were developed. ROC curves and AUCs were carried out to compare the performance of the clinical factors, radiomics signatures, and clinical radiomics nomograms. Results Tumor location, size, heterogeneous signal intensity on T2W-FS imaging, heterogeneous signal intensity on CE-T1W imaging, margin definitions on CE-T1W imaging, and septa were independent predictors for differentiating NF from STS ( P < 0.05). The performance of the radiomics signatures based on T2W-FS imaging (AUC = 0.961) and CE-T1W imaging (AUC = 0.938) was better than that based on T1W-FS imaging (AUC = 0.833). The radiomics nomograms had AUCs of 0.949, which demonstrated good clinical utility and calibration. Conclusion The non-invasive clinical radiomics nomograms exhibited good performance in the differentiation of NF from STS, and they have clinical application in the preoperative diagnosis of diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助xxw采纳,获得10
1秒前
JamesPei应助土豪的康采纳,获得10
1秒前
1秒前
ikea1984发布了新的文献求助10
1秒前
Kotory完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
诗轩发布了新的文献求助10
2秒前
善学以致用应助wanan采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
华仔应助能干的月光采纳,获得10
4秒前
4秒前
orixero应助daydayup采纳,获得10
4秒前
舒心傲蕾发布了新的文献求助10
5秒前
研友_EZ1oWL发布了新的文献求助10
6秒前
善学以致用应助竹沐鱼采纳,获得10
6秒前
6秒前
6秒前
8秒前
可爱的函函应助amzons9采纳,获得30
8秒前
zwj发布了新的文献求助10
8秒前
8秒前
白菜发布了新的文献求助200
8秒前
bc应助秋白华落霜采纳,获得30
8秒前
9秒前
asADA发布了新的文献求助10
10秒前
科研通AI2S应助糖糖采纳,获得10
10秒前
10秒前
赖雅绿完成签到,获得积分0
11秒前
long发布了新的文献求助10
11秒前
闲窳发布了新的文献求助20
12秒前
所所应助健忘天与采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610029
求助须知:如何正确求助?哪些是违规求助? 4694550
关于积分的说明 14882989
捐赠科研通 4720934
什么是DOI,文献DOI怎么找? 2544990
邀请新用户注册赠送积分活动 1509848
关于科研通互助平台的介绍 1473013