Point cloud segmentation for an individual tree combining improved point transformer and hierarchical clustering

点云 分割 计算机科学 聚类分析 图像分割 树(集合论) 尺度空间分割 人工智能 数据挖掘 模式识别(心理学) 数学 数学分析
作者
Xiangdong Hu,Chunhua Hu,Jiangang Han,Hao Sun,Rui Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:17 (03)
标识
DOI:10.1117/1.jrs.17.034505
摘要

Individual tree segmentation of forestry point cloud data is of great significance to forest management and resource detection, because it can quickly and efficiently extract tree parameters and calculate biomass. Although research on individual tree segmentation of forestry point cloud data has made great progress, there are still many problems. For example, it is difficult to separate two trees when they are close to each other or occluded. In this work, a point cloud segmentation method is proposed to obtain an individual tree from forest plantation datasets, which combines improved point transformer and hierarchical clustering method. First, we use the improved point transformer to remove the ground and non-tree data to obtain pure tree point cloud data. Second, the tree point cloud data are converted to digital surface model and the watershed segmentation algorithm is used for the preliminary segmentation. Subsequently, a merging algorithm is proposed to merge the missing segmented point cloud data at the edge of the point cloud with the successfully segmented point cloud data, according to the nearest point cloud category. However, the results after the merging algorithm still have trees that cannot be segmented. Finally, a hierarchical clustering method is proposed for fine segmentation. For the improved point transformer, we utilized three regions for verification and three regions for testing. The mean intersection over union (MIOU) of the improved point transformer on the test set is 0.976, which is 1.1% higher than that of the original point transformer. For individual tree segmentation, we tested on five regions and obtained a MIOU of 0.742. The results demonstrate that the method proposed in this work can achieve better individual tree segmentation than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张肥肥完成签到 ,获得积分20
刚刚
明亮的斩关注了科研通微信公众号
刚刚
科研通AI5应助搞怪的人龙采纳,获得10
刚刚
1秒前
xiuxiu_27完成签到 ,获得积分10
1秒前
李健应助qym采纳,获得10
2秒前
风趣的爆米花完成签到,获得积分20
2秒前
韭菜发布了新的文献求助10
2秒前
2秒前
2秒前
yzxzdm完成签到 ,获得积分10
3秒前
小破仁666发布了新的文献求助10
3秒前
3秒前
英姑应助优秀的逊采纳,获得10
4秒前
ccc完成签到,获得积分20
4秒前
4秒前
4秒前
小二郎应助诗谙采纳,获得10
4秒前
4秒前
4秒前
圣晟胜发布了新的文献求助10
5秒前
5秒前
等待幼荷完成签到,获得积分10
5秒前
笑言相欢ZMN完成签到,获得积分20
5秒前
5秒前
Eric发布了新的文献求助10
5秒前
gaos发布了新的文献求助10
6秒前
6秒前
6秒前
ipeakkka发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
小小飞发布了新的文献求助10
8秒前
JamesPei应助韭菜采纳,获得10
9秒前
开开心心的开心应助wahaha采纳,获得10
9秒前
善学以致用应助YE采纳,获得10
9秒前
9秒前
9秒前
木子发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740