Point cloud segmentation for an individual tree combining improved point transformer and hierarchical clustering

点云 分割 计算机科学 聚类分析 图像分割 树(集合论) 尺度空间分割 人工智能 数据挖掘 模式识别(心理学) 数学 数学分析
作者
Xiangdong Hu,Chunhua Hu,Jiangang Han,Hao Sun,Rui Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:17 (03)
标识
DOI:10.1117/1.jrs.17.034505
摘要

Individual tree segmentation of forestry point cloud data is of great significance to forest management and resource detection, because it can quickly and efficiently extract tree parameters and calculate biomass. Although research on individual tree segmentation of forestry point cloud data has made great progress, there are still many problems. For example, it is difficult to separate two trees when they are close to each other or occluded. In this work, a point cloud segmentation method is proposed to obtain an individual tree from forest plantation datasets, which combines improved point transformer and hierarchical clustering method. First, we use the improved point transformer to remove the ground and non-tree data to obtain pure tree point cloud data. Second, the tree point cloud data are converted to digital surface model and the watershed segmentation algorithm is used for the preliminary segmentation. Subsequently, a merging algorithm is proposed to merge the missing segmented point cloud data at the edge of the point cloud with the successfully segmented point cloud data, according to the nearest point cloud category. However, the results after the merging algorithm still have trees that cannot be segmented. Finally, a hierarchical clustering method is proposed for fine segmentation. For the improved point transformer, we utilized three regions for verification and three regions for testing. The mean intersection over union (MIOU) of the improved point transformer on the test set is 0.976, which is 1.1% higher than that of the original point transformer. For individual tree segmentation, we tested on five regions and obtained a MIOU of 0.742. The results demonstrate that the method proposed in this work can achieve better individual tree segmentation than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的万万亿完成签到,获得积分20
1秒前
负责的慕灵完成签到,获得积分10
4秒前
6秒前
lllll完成签到,获得积分10
8秒前
9秒前
坦率耳机应助felix采纳,获得10
11秒前
hokuto应助felix采纳,获得10
11秒前
AaronW应助felix采纳,获得10
11秒前
科研达人完成签到,获得积分10
11秒前
13秒前
橙橙完成签到,获得积分10
14秒前
烟花应助xu采纳,获得10
16秒前
17秒前
张志伟发布了新的文献求助10
17秒前
17秒前
田様应助小小鱼采纳,获得10
18秒前
19秒前
LIU完成签到,获得积分10
20秒前
俏皮诺言发布了新的文献求助10
21秒前
n0rthstar发布了新的文献求助10
22秒前
桐桐应助FOODHUA采纳,获得10
27秒前
kjlee完成签到,获得积分10
27秒前
32秒前
32秒前
鹏鱼燕完成签到,获得积分10
33秒前
HHHJJJKKK完成签到,获得积分10
33秒前
安详芾发布了新的文献求助10
35秒前
HHHJJJKKK发布了新的文献求助10
36秒前
在水一方应助Aaaaaa瘾采纳,获得10
37秒前
37秒前
清脆的诗兰完成签到 ,获得积分10
38秒前
38秒前
39秒前
soar完成签到,获得积分10
40秒前
小豆芽应助学习通采纳,获得10
40秒前
41秒前
lkk完成签到,获得积分20
41秒前
SciGPT应助zzk采纳,获得10
41秒前
完美世界应助陶醉觅夏采纳,获得10
43秒前
cindy发布了新的文献求助10
43秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198