A methanotrophic bacterium to enable methane removal for climate mitigation

甲烷 甲烷利用细菌 温室气体 甲烷厌氧氧化 环境科学 环境化学 生物量(生态学) 产甲烷 流出物 大气甲烷 环境工程 化学 生物 生态学 有机化学
作者
Lian He,Joseph Groom,Erin Wilson,Janette Fernandez,Michael Konopka,David A. C. Beck,Mary E. Lidstrom
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (35) 被引量:44
标识
DOI:10.1073/pnas.2310046120
摘要

The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO 2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助fairy采纳,获得10
刚刚
刚刚
小马甲应助裤里采纳,获得10
刚刚
刚刚
Hydro发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
4秒前
想顺利毕业完成签到 ,获得积分10
4秒前
郭腾发布了新的文献求助10
4秒前
bkagyin应助迷路的邪欢采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
donny发布了新的文献求助10
5秒前
丘比特应助杜晓倩采纳,获得10
6秒前
tyz完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
无花果应助potato采纳,获得10
7秒前
无奈萝发布了新的文献求助10
7秒前
8秒前
情怀应助茶米采纳,获得10
8秒前
9秒前
米米碎片完成签到,获得积分10
9秒前
rsdggsrser完成签到 ,获得积分10
10秒前
Ttttt发布了新的文献求助10
10秒前
wanci应助qiong采纳,获得10
11秒前
tyz关闭了tyz文献求助
11秒前
11秒前
FashionBoy应助donny采纳,获得10
12秒前
顺利毕业完成签到,获得积分10
12秒前
学长发布了新的文献求助10
13秒前
刘岩松完成签到,获得积分20
14秒前
14秒前
ooqqoo发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
67way完成签到,获得积分10
16秒前
俭朴的寇完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133