A methanotrophic bacterium to enable methane removal for climate mitigation

甲烷 甲烷利用细菌 温室气体 甲烷厌氧氧化 环境科学 环境化学 生物量(生态学) 产甲烷 流出物 大气甲烷 环境工程 化学 生物 生态学 有机化学
作者
Lian He,Joseph Groom,Erin Wilson,Janette Fernandez,Michael Konopka,David A. C. Beck,Mary E. Lidstrom
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (35) 被引量:44
标识
DOI:10.1073/pnas.2310046120
摘要

The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO 2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌新烟完成签到,获得积分10
1秒前
xiu-er完成签到,获得积分10
1秒前
英俊延恶发布了新的文献求助10
2秒前
科研通AI5应助lxr2采纳,获得10
2秒前
田恬完成签到,获得积分10
2秒前
2506601498发布了新的文献求助10
2秒前
闻闻发布了新的文献求助10
3秒前
3秒前
jackdu完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助cccxy采纳,获得10
5秒前
5秒前
xue完成签到,获得积分10
6秒前
7秒前
强小强完成签到,获得积分10
7秒前
CodeCraft应助小嘎采纳,获得10
8秒前
8秒前
JamesPei应助清风采纳,获得10
8秒前
spring完成签到,获得积分20
8秒前
Hello应助梁京采纳,获得10
8秒前
archer发布了新的文献求助10
9秒前
9秒前
Gmhoo_完成签到,获得积分10
9秒前
Quincy完成签到,获得积分10
10秒前
11秒前
薛定谔的猫完成签到,获得积分10
11秒前
lilian完成签到,获得积分20
11秒前
土豆淀粉完成签到,获得积分10
12秒前
spring发布了新的文献求助10
12秒前
椰子发布了新的文献求助10
12秒前
12秒前
nczpf2010发布了新的文献求助10
12秒前
13秒前
ding应助走走走采纳,获得10
13秒前
哭泣夏之完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
烟花应助王大锤采纳,获得10
14秒前
杨江华发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560850
求助须知:如何正确求助?哪些是违规求助? 3134690
关于积分的说明 9408852
捐赠科研通 2834921
什么是DOI,文献DOI怎么找? 1558291
邀请新用户注册赠送积分活动 728047
科研通“疑难数据库(出版商)”最低求助积分说明 716678