阳极
材料科学
碳纳米管
锂(药物)
石墨
电解质
合金
导电体
化学工程
纳米技术
电极
复合材料
化学
医学
物理化学
内分泌学
工程类
作者
Junhua Zhou,Sheng Wang,Qitao Shi,Xueyu Lian,Yu Liu,Lijun Liu,Alicja Bachmatiuk,Jingyu Sun,Ruizhi Yang,Jin‐Ho Choi,Mark H. Rümmeli
标识
DOI:10.1007/s40843-023-2490-0
摘要
High-capacity SiO (SO)-based alloys are among the most promising anodes for next-generation lithium-ion batteries (LIBs). Challenges of SO-based anodes, including sluggish kinetics and poor stability, have been effectively mitigated by using carbon nanotubes (CNTs) as conductive additives. However, the underlying mechanism, apart from kinetics, remains elusive. Herein, we find that CNTs can help to maintain complete conductive networks of electrodes after cycling, ensuring uniform lithiation reaction. The alleviated local extra-huge volume expansion of SO will further suppress continuous solid-state interphase growth, active material delamination from the current collector, and even lithium plating. Accordingly, pure SO anode with CNTs (SO-CNTs) can cycle stably with the capacity retention of 96.2% over 200 cycles at 0.5 C (1 C = 1600 mA g−1). The function of CNTs is further proved in practical SO/graphite (SO650-CNTs, 1 C = 650 mA g−1) anode with a high capacity retention of 80.6% over 400 cycles at 1 C. This work provides a new perspective on the functional mechanism of conductive additives, and will accelerate the commercialization of alloy anodes in the battery industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI