DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 受体 有机化学 基因
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子非愚发布了新的文献求助10
刚刚
1秒前
张张发布了新的文献求助10
1秒前
0ne222发布了新的文献求助10
1秒前
靖霜发布了新的文献求助10
1秒前
3秒前
3秒前
烟花应助Bonnie采纳,获得30
3秒前
Zhang发布了新的文献求助20
4秒前
cc发布了新的文献求助10
4秒前
4秒前
山止川行完成签到 ,获得积分10
5秒前
杨志坚发布了新的文献求助10
5秒前
csy完成签到,获得积分10
6秒前
ding应助陈隆采纳,获得10
6秒前
6秒前
我是老大应助张张采纳,获得10
8秒前
丹丹子完成签到 ,获得积分10
8秒前
fengzheLing发布了新的文献求助10
9秒前
songyy发布了新的文献求助10
9秒前
大模型应助zy123采纳,获得10
9秒前
王小裔完成签到 ,获得积分10
9秒前
10秒前
Rollin发布了新的文献求助10
10秒前
12秒前
调研昵称发布了新的文献求助10
12秒前
12秒前
12秒前
细腻剑成发布了新的文献求助10
13秒前
Ray发布了新的文献求助10
14秒前
fengzheLing完成签到,获得积分10
15秒前
ok完成签到,获得积分10
16秒前
17秒前
LZY发布了新的文献求助10
17秒前
渣155136发布了新的文献求助10
17秒前
18秒前
19秒前
songyy完成签到,获得积分10
21秒前
wu应助dbzdq采纳,获得10
21秒前
CHAIZH发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821