亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 基因 受体 有机化学
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
蓦然完成签到,获得积分10
4秒前
smm完成签到 ,获得积分10
7秒前
科研通AI6.1应助冰汤葫芦采纳,获得10
8秒前
8秒前
sun448526发布了新的文献求助10
10秒前
小鱼发布了新的文献求助10
13秒前
思源应助王化省采纳,获得10
14秒前
15秒前
16秒前
沉默白猫完成签到 ,获得积分10
17秒前
方梓言发布了新的文献求助10
17秒前
西门戆戆发布了新的文献求助10
21秒前
PJY发布了新的文献求助10
22秒前
寻道图强完成签到,获得积分0
24秒前
脑洞疼应助无奈的大门采纳,获得10
25秒前
科妍通AI2_1应助PJY采纳,获得10
27秒前
温婉的谷菱完成签到,获得积分10
30秒前
无私的奇异果完成签到 ,获得积分10
30秒前
Ya完成签到 ,获得积分10
33秒前
Okanryo完成签到,获得积分10
37秒前
40秒前
sun448526完成签到,获得积分10
41秒前
William_l_c完成签到,获得积分10
43秒前
十一完成签到,获得积分10
43秒前
44秒前
女士刘完成签到,获得积分10
44秒前
44秒前
和光同尘完成签到,获得积分10
45秒前
云峤发布了新的文献求助10
46秒前
方梓言完成签到 ,获得积分10
47秒前
西门戆戆完成签到,获得积分10
47秒前
fan发布了新的文献求助10
48秒前
Owen应助帅气绮露采纳,获得10
49秒前
猪猪侠发布了新的文献求助10
50秒前
沉默火完成签到,获得积分10
51秒前
56秒前
英姑应助科研通管家采纳,获得10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094