DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 基因 受体 有机化学
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助13508104971采纳,获得10
1秒前
abc1122完成签到,获得积分10
1秒前
可靠冥幽发布了新的文献求助10
1秒前
玄叶发布了新的文献求助10
2秒前
蛋挞发布了新的文献求助10
2秒前
852应助翁家毅采纳,获得10
3秒前
3秒前
3秒前
wanci应助Huang采纳,获得30
3秒前
小粥发布了新的文献求助10
4秒前
4秒前
杭紫雪发布了新的文献求助10
4秒前
陈宏伟完成签到,获得积分10
4秒前
爆米花应助唐九采纳,获得10
4秒前
Orange应助徐晚疯采纳,获得10
4秒前
4秒前
TheYNJ完成签到,获得积分10
5秒前
挽风风风风完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
啧啧啧啧完成签到,获得积分10
6秒前
6秒前
6秒前
爆米花应助大意的飞莲采纳,获得10
7秒前
7秒前
7秒前
CX发布了新的文献求助10
8秒前
Gaomengying发布了新的文献求助10
8秒前
zhuan发布了新的文献求助10
8秒前
8秒前
slby发布了新的文献求助10
9秒前
古城小街发布了新的文献求助10
9秒前
xixifu发布了新的文献求助10
9秒前
9秒前
jackycas完成签到,获得积分10
10秒前
wxy发布了新的文献求助10
10秒前
房山芙完成签到,获得积分10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238818
求助须知:如何正确求助?哪些是违规求助? 4406474
关于积分的说明 13714044
捐赠科研通 4274861
什么是DOI,文献DOI怎么找? 2345780
邀请新用户注册赠送积分活动 1342825
关于科研通互助平台的介绍 1300786