DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 基因 受体 有机化学
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
szc-2000发布了新的文献求助10
刚刚
Akim应助笙忘采纳,获得10
1秒前
大模型应助htt采纳,获得10
1秒前
亚特兰蒂斯完成签到,获得积分10
2秒前
3秒前
xiaolu完成签到,获得积分10
3秒前
juzi完成签到 ,获得积分10
4秒前
情怀应助bonbonly采纳,获得10
5秒前
fedehe发布了新的文献求助10
5秒前
Seathern完成签到,获得积分10
5秒前
英俊的铭应助xh采纳,获得10
6秒前
6秒前
9秒前
fedehe完成签到,获得积分10
9秒前
bunny发布了新的文献求助10
10秒前
szc-2000完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
有点is完成签到,获得积分10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
18秒前
禾火完成签到,获得积分20
18秒前
一只滦完成签到,获得积分10
18秒前
Nine完成签到 ,获得积分10
19秒前
pew发布了新的文献求助10
19秒前
杨小鸿发布了新的文献求助10
20秒前
nancylan发布了新的文献求助10
20秒前
青云发布了新的文献求助30
21秒前
唐很甜完成签到 ,获得积分10
21秒前
21秒前
啊呀呀完成签到,获得积分10
22秒前
danli完成签到,获得积分20
23秒前
在水一方应助汪宇采纳,获得10
24秒前
Pan发布了新的文献求助10
25秒前
苗条平萱完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
AJ完成签到 ,获得积分10
27秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742180
求助须知:如何正确求助?哪些是违规求助? 5406715
关于积分的说明 15344214
捐赠科研通 4883585
什么是DOI,文献DOI怎么找? 2625155
邀请新用户注册赠送积分活动 1574005
关于科研通互助平台的介绍 1530964