清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 基因 受体 有机化学
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
9秒前
bailubailing发布了新的文献求助10
12秒前
求学发布了新的文献求助10
13秒前
Jasper应助阿萨卡先生采纳,获得10
24秒前
研友_8K2QJZ完成签到,获得积分10
24秒前
Singularity完成签到,获得积分0
30秒前
33秒前
wefs完成签到,获得积分10
38秒前
39秒前
烟花应助科研通管家采纳,获得10
43秒前
小马甲应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
噜噜晓完成签到 ,获得积分10
48秒前
傻瓜完成签到 ,获得积分10
1分钟前
1分钟前
fatcat完成签到,获得积分10
1分钟前
www发布了新的文献求助10
1分钟前
llhsw52完成签到,获得积分10
1分钟前
llhsw52关注了科研通微信公众号
1分钟前
上官若男应助lan199623采纳,获得10
1分钟前
yuntong完成签到 ,获得积分10
1分钟前
华仔应助求学采纳,获得10
1分钟前
1分钟前
lan199623发布了新的文献求助10
2分钟前
adovj完成签到 ,获得积分10
2分钟前
2分钟前
求学发布了新的文献求助10
2分钟前
zzhui完成签到,获得积分10
2分钟前
lan199623完成签到,获得积分10
2分钟前
Mountain完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
可爱沛蓝完成签到 ,获得积分10
2分钟前
情怀应助阿萨卡先生采纳,获得10
2分钟前
大个应助Singularity采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349