DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 基因 受体 有机化学
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
shuai发布了新的文献求助60
1秒前
2秒前
linzg发布了新的文献求助10
2秒前
2秒前
2秒前
Akim应助虚幻的小海豚采纳,获得10
2秒前
1101001发布了新的文献求助50
2秒前
Angora发布了新的文献求助10
3秒前
3秒前
3秒前
搜集达人应助JJMM采纳,获得10
4秒前
潘升国发布了新的文献求助10
4秒前
Yannis发布了新的文献求助10
4秒前
4秒前
期辰完成签到,获得积分10
4秒前
5秒前
zyj完成签到,获得积分10
6秒前
pluto应助佳佳528采纳,获得10
7秒前
1234发布了新的文献求助10
7秒前
852应助明亮冰颜采纳,获得10
9秒前
研友_VZG7GZ应助期辰采纳,获得10
9秒前
DQ发布了新的文献求助10
9秒前
Ray羽曦~发布了新的文献求助10
10秒前
蒸盐粥发布了新的文献求助10
10秒前
bicargo完成签到,获得积分20
10秒前
10秒前
赘婿应助yolo采纳,获得30
12秒前
乐观的颦完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
Akim应助shuai采纳,获得30
17秒前
17秒前
12完成签到,获得积分10
19秒前
迷恋果完成签到,获得积分10
19秒前
20秒前
潘升国发布了新的文献求助10
21秒前
22秒前
小z发布了新的文献求助10
23秒前
Ray羽曦~完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535