DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction

溶剂化 配体(生物化学) 化学 计算机科学 蛋白质配体 生物信息学 小分子 计算化学 计算科学 分子 生物系统 算法 生物化学 生物 基因 受体 有机化学
作者
Jiaqi Liu,Jian Wan,Yanliang Ren,Xubo Shao,Xin Xu,Li Rao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4850-4863
标识
DOI:10.1021/acs.jcim.3c00776
摘要

Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助萧衍采纳,获得10
1秒前
79发布了新的文献求助10
4秒前
无花果应助jimi采纳,获得10
4秒前
luki完成签到,获得积分10
5秒前
Aixia完成签到 ,获得积分10
5秒前
狼主发布了新的文献求助10
5秒前
66完成签到,获得积分10
6秒前
完美的友蕊应助喜悦的斓采纳,获得10
6秒前
美好的白风完成签到 ,获得积分10
7秒前
9秒前
9秒前
suzy-123完成签到,获得积分10
9秒前
满意白开水完成签到,获得积分10
11秒前
小巧半芹发布了新的文献求助10
12秒前
狼主完成签到,获得积分10
13秒前
13秒前
幽默海燕完成签到 ,获得积分10
13秒前
16秒前
许锦程完成签到,获得积分10
17秒前
17秒前
20秒前
JY完成签到,获得积分10
22秒前
大模型应助丰富绿蝶采纳,获得10
22秒前
鸭鸭串完成签到,获得积分10
22秒前
23秒前
Vv发布了新的文献求助10
25秒前
25秒前
852应助能接受微辣采纳,获得10
25秒前
qyhl完成签到 ,获得积分10
26秒前
小宝完成签到,获得积分10
26秒前
淡淡夕阳发布了新的文献求助10
26秒前
Jay完成签到,获得积分10
27秒前
27秒前
文献通完成签到 ,获得积分10
28秒前
牛小浓发布了新的文献求助10
31秒前
张张想去301完成签到 ,获得积分10
31秒前
沉123发布了新的文献求助10
32秒前
111发布了新的文献求助10
33秒前
巴巴变发布了新的文献求助30
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311