HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction

增强子 计算机科学 堆(数据结构) 语法 人工智能 机器学习 任务(项目管理) 生物 基因 转录因子 程序设计语言 遗传学 语言学 哲学 管理 经济
作者
Yuhang Liu,Zixuan Wang,Haitao Yuan,Guiquan Zhu,Yongqing Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad286
摘要

Abstract Enhancers are crucial cis-regulatory elements that control gene expression in a cell-type-specific manner. Despite extensive genetic and computational studies, accurately predicting enhancer activity in different cell types remains a challenge, and the grammar of enhancers is still poorly understood. Here, we present HEAP (high-resolution enhancer activity prediction), an explainable deep learning framework for predicting enhancers and exploring enhancer grammar. The framework includes three modules that use grammar-based reasoning for enhancer prediction. The algorithm can incorporate DNA sequences and epigenetic modifications to obtain better accuracy. We use a novel two-step multi-task learning method, task adaptive parameter sharing (TAPS), to efficiently predict enhancers in different cell types. We first train a shared model with all cell-type datasets. Then we adapt to specific tasks by adding several task-specific subset layers. Experiments demonstrate that HEAP outperforms published methods and showcases the effectiveness of the TAPS, especially for those with limited training samples. Notably, the explainable framework HEAP utilizes post-hoc interpretation to provide insights into the prediction mechanisms from three perspectives: data, model architecture and algorithm, leading to a better understanding of model decisions and enhancer grammar. To the best of our knowledge, HEAP will be a valuable tool for insight into the complex mechanisms of enhancer activity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶美宏完成签到,获得积分10
1秒前
Lucas应助天真无招采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
sherry完成签到 ,获得积分10
2秒前
lxw发布了新的文献求助10
2秒前
2秒前
郭素玲完成签到,获得积分10
2秒前
别叫我吃饭饭饭完成签到 ,获得积分10
3秒前
蛋挞好吃发布了新的文献求助10
3秒前
July完成签到 ,获得积分10
3秒前
隐形曼青应助nssm采纳,获得10
3秒前
hobby初完成签到,获得积分10
3秒前
纯真的柔发布了新的文献求助10
3秒前
3秒前
SRsora完成签到,获得积分10
3秒前
大胆冰岚完成签到,获得积分10
3秒前
4秒前
满增明完成签到,获得积分10
4秒前
解语花发布了新的文献求助100
4秒前
xyz完成签到,获得积分10
4秒前
wwy727完成签到 ,获得积分10
5秒前
Jcccc发布了新的文献求助10
5秒前
有魅力的小蜜蜂完成签到,获得积分10
5秒前
CHENG_2025完成签到,获得积分10
5秒前
Wind应助杨一乐采纳,获得10
6秒前
7秒前
ajun完成签到,获得积分10
7秒前
8秒前
8秒前
野椰完成签到 ,获得积分10
8秒前
王浩发布了新的文献求助10
8秒前
富贵儿完成签到,获得积分20
9秒前
超哥完成签到,获得积分10
9秒前
9秒前
玊尔吡咯烷酮完成签到,获得积分10
9秒前
Hu完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585741
求助须知:如何正确求助?哪些是违规求助? 4669361
关于积分的说明 14776911
捐赠科研通 4618356
什么是DOI,文献DOI怎么找? 2530650
邀请新用户注册赠送积分活动 1499380
关于科研通互助平台的介绍 1467750