Enveloped Huber Regression

异方差 估计员 渐近分布 数学 一致性(知识库) 协变量 回归 统计 回归分析 应用数学 分布(数学) 离散数学 数学分析
作者
Le Zhou,R. Dennis Cook,Hui Zou
标识
DOI:10.1080/01621459.2023.2277403
摘要

Huber regression (HR) is a popular flexible alternative to the least squares regression when the error follows a heavy-tailed distribution. We propose a new method called the enveloped Huber regression (EHR) by considering the envelope assumption that there exists some subspace of the predictors that has no association with the response, which is referred to as the immaterial part. More efficient estimation is achieved via the removal of the immaterial part. Different from the envelope least squares (ENV) model whose estimation is based on maximum normal likelihood, the estimation of the EHR model is through Generalized Method of Moments. The asymptotic normality of the EHR estimator is established, and it is shown that EHR is more efficient than HR. Moreover, EHR is more efficient than ENV when the error distribution is heavy-tailed, while maintaining a small efficiency loss when the error distribution is normal. Moreover, our theory also covers the heteroscedastic case in which the error may depend on the covariates. The envelope dimension in EHR is a tuning parameter to be determined by the data in practice. We further propose a novel generalized information criterion (GIC) for dimension selection and establish its consistency. Extensive simulation studies confirm the messages from our theory. EHR is further illustrated on a real dataset. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伟伟完成签到,获得积分10
1秒前
甜蜜代双发布了新的文献求助10
1秒前
Ava应助rad1413采纳,获得10
2秒前
小马甲应助张张采纳,获得10
2秒前
liuyulu615完成签到,获得积分10
2秒前
4秒前
xiaoliu完成签到,获得积分10
4秒前
zz完成签到 ,获得积分10
4秒前
5秒前
5秒前
蒋若之完成签到,获得积分10
5秒前
6秒前
白华苍松发布了新的文献求助10
6秒前
add完成签到,获得积分20
7秒前
Jaho完成签到,获得积分10
8秒前
所所应助温暖果汁采纳,获得10
8秒前
8秒前
9秒前
调研昵称发布了新的文献求助10
10秒前
隐风发布了新的文献求助10
10秒前
10秒前
liuyulu615发布了新的文献求助10
11秒前
xdx应助坚定的如凡采纳,获得10
11秒前
art6886完成签到,获得积分10
11秒前
12秒前
12秒前
xiaoliu发布了新的文献求助10
13秒前
甜蜜代双完成签到,获得积分10
13秒前
刘维尼发布了新的文献求助10
13秒前
Tycoon发布了新的文献求助200
13秒前
evijaxmes完成签到,获得积分10
13秒前
张光光完成签到 ,获得积分10
13秒前
正直的小猫咪完成签到,获得积分10
14秒前
学土木的凯蒂猫应助123采纳,获得10
15秒前
乌云发布了新的文献求助10
15秒前
领导范儿应助add采纳,获得10
15秒前
张张发布了新的文献求助10
15秒前
海带拳大力士完成签到,获得积分10
16秒前
123发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306775
求助须知:如何正确求助?哪些是违规求助? 2940581
关于积分的说明 8497765
捐赠科研通 2614785
什么是DOI,文献DOI怎么找? 1428522
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263