Optimization model for low-carbon supply chain considering multi-level backup strategy under hybrid uncertainty

供应链 利润(经济学) 备份 数学优化 计算机科学 环境经济学 微观经济学 业务 经济 数学 营销 数据库
作者
Yingtong Wang,Xiaoyu Ji
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:126: 1-21 被引量:8
标识
DOI:10.1016/j.apm.2023.10.034
摘要

When constructing a supply chain, the profit, environmental impact, and hybrid uncertainties the supply chain faces should be considered. This research investigates the problem of low-carbon supply chain design under hybrid uncertainty, where demand is regarded as a stochastic variable, supply and transportation disruptions are regarded as uncertain events, and the coefficient of emission reduction capacity of suppliers is regarded as an uncertain variable. Based on the probability theory and uncertainty theory, a mixed-integer optimization model is constructed to handle the disruption risk by utilizing a multi-level backup strategy and to reduce carbon emissions by investing in suppliers. This model guarantees that manufacturers’ demand is satisfied to a given confidence level, manufacturers prefer to construct a supply chain within the acceptable supply chain risk, the emission reduction investment scheme and the supply decision to manufacturers are determined to maximize the profit of the supply chain. To facilitate the solution, we perform deterministic equivalent transformation of stochastic and uncertainty constraints, linearize the nonlinear constraints, and analyze the mathematical properties of the model. Finally, the validity of the proposed model is verified by case studies. The results show that although the larger the supply levels, that is, the more priority levels of suppliers, the more beneficial it is to improve the reliability, too large supply levels will reduce profits. The reasonable setting of the supply levels can optimize the emission reduction investment scheme. In addition, the confidence level of carbon emission should be set within a certain range to avoid the disparity between profit growth and emission reduction. Finally, the greater the belief degree of disruption or the lower the emission reduction capacity of suppliers, the more significant the effect of a multi-level backup strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲艺完成签到,获得积分10
刚刚
居崽完成签到 ,获得积分10
1秒前
gbx完成签到,获得积分10
1秒前
风之圣痕完成签到,获得积分10
2秒前
asenda完成签到,获得积分0
2秒前
晓听竹雨完成签到,获得积分10
2秒前
饶子阳发布了新的文献求助10
2秒前
2秒前
shen完成签到,获得积分20
4秒前
乐乐应助yanziwu94采纳,获得10
4秒前
qinjiehm完成签到,获得积分10
4秒前
xiaohanzai88完成签到,获得积分10
4秒前
寒星苍梧完成签到,获得积分10
4秒前
材袅完成签到,获得积分10
4秒前
theinu完成签到,获得积分10
6秒前
6秒前
缓慢的甜瓜完成签到,获得积分10
7秒前
7秒前
小米完成签到,获得积分10
7秒前
小超完成签到,获得积分10
7秒前
koukousang完成签到,获得积分10
7秒前
8秒前
八九完成签到,获得积分10
8秒前
可爱的小树苗完成签到,获得积分10
9秒前
李银锋完成签到,获得积分10
9秒前
花开hhhhhhh完成签到,获得积分10
9秒前
10秒前
10秒前
Donson_Li完成签到,获得积分10
10秒前
yao发布了新的文献求助10
11秒前
英雷完成签到,获得积分10
11秒前
化工兔完成签到,获得积分10
11秒前
12秒前
jjyy完成签到,获得积分10
12秒前
宋佳顺完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
智胜东方朔完成签到,获得积分10
15秒前
LJ_2完成签到 ,获得积分10
15秒前
nyfz2002发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597902
求助须知:如何正确求助?哪些是违规求助? 4009316
关于积分的说明 12410427
捐赠科研通 3688598
什么是DOI,文献DOI怎么找? 2033325
邀请新用户注册赠送积分活动 1066591
科研通“疑难数据库(出版商)”最低求助积分说明 951742