An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique

自回归积分移动平均 ARCH模型 异方差 自回归模型 随机森林 时间序列 计算机科学 系列(地层学) 均方误差 选型 统计 计量经济学 人工智能 数学 机器学习 波动性(金融) 古生物学 生物
作者
Soumik Ray,Achal Lama,Pradeep Mishra,Tufleuddin Biswas,Soumitra Sankar Das,Bishal Gurung
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:149: 110939-110939 被引量:60
标识
DOI:10.1016/j.asoc.2023.110939
摘要

Machine learning mechanism is establishing itself as a promising area for modelling and forecasting complex time series over conventional statistical models. In this article, focus has been made on presenting a machine learning algorithm with special attention to deep learning model in form of a potential alternative to statistical models such as Autoregressive Integrated Moving Average (ARIMA) and ARIMA-Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models. Further, an improved hybrid ARIMA-Long Short-Term Memory (LSTM) model based on the random forest lag selection criterion has been introduced. ARIMA model has been used to estimate the mean effect and the GARCH model is employed with the residuals obtained from the ARIMA model to estimate the volatile behaviour of the series. ARIMA-GARCH models act as superior statistical models over ARIMA models based on the lowest AIC and BIC values. LSTM model is employed on all normalised training data series. After which we built a comparison scenario independently between ARIMA, ARIMA-GARCH, LSTM and ARIMA-LSTM models on forecasting accuracy in terms of the lowest RMSE, MAPE and MASE values. The proposed random forest-based ARIMA-LSTM model proved its superiority over the conventional statistical models with an improvement to the tune of 8–25% for RMSE, 2–28% for MAPE and 2–29% for MASE. The proposed hybrid model has been successfully applied to volatile monthly price indices of pulses namely gram, moong and urad. This piece of work will enrich the literature on machine learning and further intrigue researchers to apply it to various other volatile data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助谷谷采纳,获得10
1秒前
1秒前
1秒前
银色星辰发布了新的文献求助30
1秒前
Lei-sir完成签到 ,获得积分10
2秒前
xixixixi给xixixixi的求助进行了留言
2秒前
摇光完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
蓓蓓完成签到,获得积分10
5秒前
Lucas应助辛苦科研人采纳,获得10
6秒前
6秒前
Alluring发布了新的文献求助10
6秒前
Xieyusen发布了新的文献求助10
6秒前
我是老大应助想要毕业采纳,获得10
6秒前
英俊的铭应助漂亮的烧鹅采纳,获得30
7秒前
独特小刺猬关注了科研通微信公众号
7秒前
7秒前
我是老大应助念安采纳,获得10
8秒前
8秒前
8秒前
银色星辰完成签到,获得积分10
8秒前
田様应助Angora采纳,获得10
9秒前
yyyyyyyyy完成签到,获得积分10
10秒前
10秒前
大个应助Dawn采纳,获得10
11秒前
11秒前
12秒前
swh完成签到,获得积分10
12秒前
13秒前
Cloud完成签到,获得积分10
13秒前
13秒前
13秒前
cq发布了新的文献求助10
13秒前
14秒前
可耐的锦程完成签到,获得积分10
14秒前
科研通AI6应助Quinn采纳,获得10
15秒前
15秒前
16秒前
十绎完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921720
求助须知:如何正确求助?哪些是违规求助? 4192827
关于积分的说明 13023256
捐赠科研通 3964364
什么是DOI,文献DOI怎么找? 2172939
邀请新用户注册赠送积分活动 1190594
关于科研通互助平台的介绍 1099777