清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier]
卷期号:232: 43-53 被引量:8
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
even完成签到 ,获得积分10
5秒前
lynn完成签到 ,获得积分10
9秒前
披着羊皮的狼完成签到 ,获得积分10
15秒前
星辰大海应助科研通管家采纳,获得10
26秒前
点点完成签到 ,获得积分10
32秒前
夜琉璃完成签到 ,获得积分10
33秒前
无尘完成签到 ,获得积分0
48秒前
徐徐完成签到 ,获得积分10
52秒前
joker完成签到 ,获得积分10
52秒前
怕孤单的羊完成签到 ,获得积分10
1分钟前
默默完成签到 ,获得积分10
1分钟前
劳伦斯完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
boymin2015完成签到 ,获得积分10
1分钟前
舒心的青亦完成签到 ,获得积分10
1分钟前
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
Wenyu完成签到,获得积分10
1分钟前
RLLLLLLL完成签到 ,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
时老完成签到 ,获得积分10
1分钟前
CR完成签到 ,获得积分10
1分钟前
小山己几完成签到,获得积分10
2分钟前
潇湘完成签到 ,获得积分10
2分钟前
勤恳的惋庭完成签到 ,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
波波完成签到 ,获得积分10
2分钟前
qw1完成签到,获得积分20
2分钟前
666666完成签到,获得积分10
2分钟前
朴素羊完成签到 ,获得积分10
2分钟前
2分钟前
可爱的函函应助sue采纳,获得10
3分钟前
英姑应助朔月采纳,获得10
3分钟前
April完成签到 ,获得积分10
3分钟前
慕青应助朔月采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293474
求助须知:如何正确求助?哪些是违规求助? 4443563
关于积分的说明 13831373
捐赠科研通 4327360
什么是DOI,文献DOI怎么找? 2375429
邀请新用户注册赠送积分活动 1370718
关于科研通互助平台的介绍 1335584