Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier BV]
卷期号:232: 43-53 被引量:1
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饱再睡完成签到 ,获得积分10
1秒前
白马非马完成签到 ,获得积分10
3秒前
FashionBoy应助乔治采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
堀江真夏完成签到 ,获得积分10
7秒前
Liziqi823完成签到,获得积分10
8秒前
Owen完成签到,获得积分10
9秒前
时尚雨兰完成签到,获得积分10
11秒前
不会搞科研完成签到,获得积分0
11秒前
李思超完成签到 ,获得积分10
11秒前
HHHu完成签到,获得积分10
12秒前
轴承完成签到 ,获得积分10
13秒前
热情的采枫完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
严谨严谨严谨完成签到 ,获得积分10
14秒前
韭菜完成签到,获得积分20
15秒前
16秒前
123完成签到 ,获得积分10
17秒前
Winvy完成签到,获得积分10
18秒前
酷炫的书本完成签到,获得积分10
19秒前
美好芳完成签到 ,获得积分10
19秒前
song完成签到 ,获得积分10
21秒前
922完成签到,获得积分20
23秒前
Lune7完成签到 ,获得积分10
24秒前
无情的访冬完成签到 ,获得积分10
24秒前
111完成签到,获得积分10
25秒前
CES_SH完成签到,获得积分10
26秒前
小知了完成签到,获得积分10
27秒前
壮观的白羊完成签到 ,获得积分10
28秒前
谦让汝燕完成签到,获得积分10
28秒前
现实的日记本完成签到,获得积分10
30秒前
韭黄发布了新的文献求助10
30秒前
科研通AI5应助支雨泽采纳,获得10
31秒前
英勇的红酒完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助150
33秒前
马儿饿了要吃草完成签到,获得积分10
33秒前
乔治完成签到,获得积分10
36秒前
坦率的棒棒糖完成签到,获得积分10
39秒前
牧长一完成签到 ,获得积分0
39秒前
荔枝励志完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215173
关于积分的说明 13111456
捐赠科研通 3997149
什么是DOI,文献DOI怎么找? 2187760
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740