Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier]
卷期号:232: 43-53 被引量:8
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任意门完成签到,获得积分20
1秒前
科研通AI6应助悠悠采纳,获得10
1秒前
3秒前
JI完成签到,获得积分10
4秒前
任意门发布了新的文献求助10
5秒前
莃莃莃喜欢你完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
曹梓聪完成签到,获得积分10
8秒前
化合物来完成签到,获得积分10
9秒前
拼搏如冰发布了新的文献求助10
11秒前
11秒前
平头哥哥完成签到 ,获得积分10
11秒前
哆面体完成签到,获得积分10
13秒前
222666完成签到,获得积分10
14秒前
FEI发布了新的文献求助10
15秒前
qizhia发布了新的文献求助10
16秒前
Hello应助峰feng采纳,获得10
16秒前
李健的小迷弟应助8y24dp采纳,获得10
17秒前
algain完成签到 ,获得积分10
20秒前
奥丁蒂法完成签到,获得积分10
21秒前
快乐的忆安完成签到,获得积分10
22秒前
23秒前
24秒前
前行的灿完成签到 ,获得积分10
25秒前
忧心的惜天完成签到 ,获得积分10
25秒前
TYQ完成签到,获得积分10
27秒前
8y24dp发布了新的文献求助10
28秒前
峰feng发布了新的文献求助10
30秒前
TYW完成签到,获得积分10
31秒前
打打应助咖啡豆采纳,获得10
32秒前
VDC完成签到,获得积分0
33秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
派出所110完成签到 ,获得积分10
35秒前
李温暖完成签到,获得积分10
39秒前
空勒发布了新的文献求助10
40秒前
打打应助英勇的老头采纳,获得30
41秒前
旋转胡萝卜完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
50秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456156
求助须知:如何正确求助?哪些是违规求助? 4563144
关于积分的说明 14288330
捐赠科研通 4487539
什么是DOI,文献DOI怎么找? 2457974
邀请新用户注册赠送积分活动 1448364
关于科研通互助平台的介绍 1423929