Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier]
卷期号:232: 43-53 被引量:11
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
姜彩秀完成签到,获得积分10
4秒前
灵巧的青寒完成签到,获得积分10
7秒前
theThreeMagi完成签到,获得积分10
9秒前
乐观健柏完成签到,获得积分10
10秒前
12秒前
困惑仔应助ABBCCC采纳,获得10
12秒前
123456777完成签到 ,获得积分10
16秒前
17秒前
lbx发布了新的文献求助10
17秒前
寄托完成签到 ,获得积分10
18秒前
kunny完成签到 ,获得积分10
19秒前
还是你天天完成签到 ,获得积分10
19秒前
panpanliumin完成签到,获得积分0
19秒前
Tonald Yang发布了新的文献求助10
20秒前
健壮洋葱完成签到 ,获得积分10
21秒前
姜勇完成签到,获得积分10
21秒前
Xiaoyisheng完成签到,获得积分10
22秒前
天真幻珊完成签到 ,获得积分0
24秒前
25秒前
chiien完成签到 ,获得积分10
27秒前
距破之舞完成签到,获得积分10
27秒前
yummy弯完成签到 ,获得积分10
28秒前
星辰大海应助庾尔风采纳,获得10
32秒前
biopig发布了新的文献求助10
32秒前
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
celk2010完成签到 ,获得积分10
36秒前
谦让的慕凝完成签到 ,获得积分10
38秒前
黑炭球完成签到,获得积分10
39秒前
易槐完成签到 ,获得积分10
40秒前
国王的宝库完成签到,获得积分10
40秒前
FashionBoy应助巫念烟采纳,获得10
41秒前
张流筝完成签到 ,获得积分10
42秒前
yuancw完成签到 ,获得积分0
46秒前
46秒前
ashin17完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866758
求助须知:如何正确求助?哪些是违规求助? 6426838
关于积分的说明 15654966
捐赠科研通 4981749
什么是DOI,文献DOI怎么找? 2686737
邀请新用户注册赠送积分活动 1629553
关于科研通互助平台的介绍 1587550