Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier]
卷期号:232: 43-53 被引量:1
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到,获得积分10
刚刚
1秒前
胖崽完成签到,获得积分10
2秒前
2秒前
2秒前
舒心以蓝完成签到,获得积分10
3秒前
Alston发布了新的文献求助10
3秒前
www发布了新的文献求助10
4秒前
wtn完成签到,获得积分10
4秒前
4秒前
iii完成签到 ,获得积分10
4秒前
大帅哥关注了科研通微信公众号
4秒前
4秒前
Rhino完成签到 ,获得积分10
5秒前
路路有为发布了新的文献求助10
5秒前
烫水完成签到,获得积分10
6秒前
奶油橙子完成签到,获得积分10
7秒前
毒蛇如我发布了新的文献求助10
7秒前
7秒前
尊敬雪萍完成签到,获得积分10
7秒前
囚穆完成签到 ,获得积分10
8秒前
星辰大海应助吴大王采纳,获得10
8秒前
小松鼠完成签到,获得积分10
8秒前
9秒前
阮楷瑞发布了新的文献求助10
9秒前
张不张完成签到,获得积分10
9秒前
www完成签到,获得积分10
10秒前
夏天的蜜雪冰城完成签到 ,获得积分10
11秒前
开心的短靴完成签到 ,获得积分10
11秒前
zj完成签到,获得积分10
11秒前
宜醉宜游宜睡应助dreamland采纳,获得10
11秒前
13秒前
13秒前
大舟Austin完成签到 ,获得积分10
13秒前
Owen应助WhiteT采纳,获得10
14秒前
默默的树叶完成签到,获得积分10
14秒前
喜悦的尔阳完成签到,获得积分10
15秒前
Escanor应助Frank采纳,获得10
15秒前
小二郎应助古德方采纳,获得10
15秒前
听南发布了新的文献求助10
16秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Elastic local buckling behaviour of corroded cold-formed steel columns 500
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180361
求助须知:如何正确求助?哪些是违规求助? 2830668
关于积分的说明 7980006
捐赠科研通 2492315
什么是DOI,文献DOI怎么找? 1329421
科研通“疑难数据库(出版商)”最低求助积分说明 635728
版权声明 602954