Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier]
卷期号:232: 43-53 被引量:8
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桔子完成签到 ,获得积分10
2秒前
3秒前
李燕伟完成签到 ,获得积分10
3秒前
混子king完成签到 ,获得积分10
4秒前
MOON完成签到,获得积分20
4秒前
vungocbinh完成签到,获得积分10
5秒前
临平吴彦祖完成签到 ,获得积分10
6秒前
zjy147完成签到,获得积分10
8秒前
科研通AI6应助下酒菜采纳,获得10
8秒前
科目三应助超级的小熊猫采纳,获得10
9秒前
sherry完成签到 ,获得积分10
9秒前
611牛马完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
布蓝图完成签到 ,获得积分10
13秒前
一颗糖完成签到 ,获得积分10
14秒前
Roy完成签到,获得积分10
14秒前
华仔应助HM采纳,获得10
15秒前
寒冷子轩完成签到,获得积分20
17秒前
17秒前
17秒前
gglp完成签到 ,获得积分10
18秒前
勤恳万宝路完成签到,获得积分10
18秒前
成就绮琴完成签到 ,获得积分10
20秒前
22秒前
22秒前
祝你勇敢完成签到 ,获得积分0
23秒前
28秒前
28秒前
干净的新梅完成签到,获得积分20
29秒前
tyj完成签到,获得积分10
30秒前
chun完成签到 ,获得积分10
30秒前
于归故城完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
lily完成签到,获得积分10
32秒前
似水流华完成签到 ,获得积分10
33秒前
眼睛大樱桃完成签到,获得积分10
33秒前
阿曾完成签到 ,获得积分10
34秒前
下酒菜发布了新的文献求助10
35秒前
37秒前
云雨完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418652
求助须知:如何正确求助?哪些是违规求助? 4534317
关于积分的说明 14143457
捐赠科研通 4450523
什么是DOI,文献DOI怎么找? 2441286
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438