Classification of epileptic EEG signals with the utilization of Bonferroni mean based fuzzy pattern tree

计算机科学 模式识别(心理学) 人工智能 脑电图 模糊逻辑 串联(数学) 分类器(UML) 小波 癫痫发作 二元分类 机器学习 数学 支持向量机 心理学 组合数学 精神科
作者
Gowtham Reddy N,Swati Rani Hait,Debashree Guha,Manjunatha Mahadevappa
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122424-122424 被引量:5
标识
DOI:10.1016/j.eswa.2023.122424
摘要

The Electroencephalogram (EEG) is an essential tool used to detect and investigate multiple neurological disorders within the human brain. However, examination and visualization of any such abnormalities in the brain through inspecting these EEG signals is a time-consuming and repetitive task for a neurologist. Hence, there is a need to develop a model that can automatically classify brain disorders based on the EEG signals. In this study, a novel fuzzy classification model is proposed for classifying the EEG signals. First, the discrete wavelet transform (DWT) technique is employed to decompose the signal into time-frequency sub-bands. Then, by utilizing these sub-bands, seven meaningful statistical features are extracted effectively for additional investigation purposes. Then, the retrieved features are provided to the fuzzy pattern tree classifier to obtain meaningful inferences from the data. Here, a distinctive structure of a fuzzy pattern tree is proposed by utilizing the interrelationship handling aggregation operators. More precisely, we utilize the Bonferroni mean (BM) aggregation operator for the enlargement or expansion of the tree while considering the concatenation between the parent and the slave tree. To the best of our knowledge, this is the first work that presents such an interrelationship handling fuzzy logic-based classifier model for EEG signal classification. The proposed algorithm is evaluated using two publicly available datasets, namely the Bonn University (Bonn) epileptic datasets and the Temple University Hospital (TUH) EEG subcorpus of abnormal (TUAB) and epilepsy (TUEP) datasets. This study considers different frames of the binary problem (i.e., healthy vs. seizure detection) and multi-class problem (i.e., healthy vs. seizure free vs. seizure) over the Bonn dataset and achieves more than 99% accuracy over the binary model by testing over all possible combinations of the available experimental dataset and 97.8% accuracy in multi-class model. In the case of TUAB and TUEP categories, the model achieves an accuracy of 88% in predicting normal to abnormal activities and 86% in detecting epilepsy and non-epilepsy within the signals. The outcomes derived from the proposed model outperform some existing studies available in the literature for EEG signal classification. Also, the model is efficient as it considers the uncertainty and association among the features while framing the classifier model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
荼蘼如雪完成签到,获得积分10
1秒前
bin完成签到,获得积分10
1秒前
Bio应助22采纳,获得30
1秒前
1秒前
研友_VZG7GZ应助dayuernihao采纳,获得10
2秒前
lxc发布了新的文献求助10
2秒前
Yancy发布了新的文献求助10
3秒前
4秒前
科研通AI6应助yees采纳,获得10
4秒前
无花果应助keeee采纳,获得10
5秒前
6秒前
NexusExplorer应助lydia采纳,获得10
6秒前
Shirley完成签到,获得积分10
7秒前
东方城发布了新的文献求助10
7秒前
7秒前
Leif发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助50
9秒前
9秒前
pfshan发布了新的文献求助10
10秒前
桃井尤川完成签到,获得积分10
10秒前
浮游应助Gavin啥也不会采纳,获得10
10秒前
派大星的海洋裤完成签到,获得积分10
10秒前
Yancy完成签到,获得积分20
11秒前
Limity完成签到,获得积分10
11秒前
11秒前
Panjiao完成签到 ,获得积分10
11秒前
11秒前
风清扬发布了新的文献求助10
12秒前
lanchong发布了新的文献求助10
12秒前
12秒前
lxc关闭了lxc文献求助
14秒前
14秒前
15秒前
xiaosenlinhai发布了新的文献求助10
15秒前
YYJJHH发布了新的文献求助10
15秒前
刘大喜完成签到,获得积分10
15秒前
南山无梅落完成签到,获得积分10
16秒前
浮游应助Yancy采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331