Classification of epileptic EEG signals with the utilization of Bonferroni mean based fuzzy pattern tree

计算机科学 模式识别(心理学) 人工智能 脑电图 模糊逻辑 串联(数学) 分类器(UML) 小波 癫痫发作 二元分类 机器学习 数学 支持向量机 心理学 组合数学 精神科
作者
Gowtham Reddy N,Swati Rani Hait,Debashree Guha,Manjunatha Mahadevappa
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122424-122424 被引量:5
标识
DOI:10.1016/j.eswa.2023.122424
摘要

The Electroencephalogram (EEG) is an essential tool used to detect and investigate multiple neurological disorders within the human brain. However, examination and visualization of any such abnormalities in the brain through inspecting these EEG signals is a time-consuming and repetitive task for a neurologist. Hence, there is a need to develop a model that can automatically classify brain disorders based on the EEG signals. In this study, a novel fuzzy classification model is proposed for classifying the EEG signals. First, the discrete wavelet transform (DWT) technique is employed to decompose the signal into time-frequency sub-bands. Then, by utilizing these sub-bands, seven meaningful statistical features are extracted effectively for additional investigation purposes. Then, the retrieved features are provided to the fuzzy pattern tree classifier to obtain meaningful inferences from the data. Here, a distinctive structure of a fuzzy pattern tree is proposed by utilizing the interrelationship handling aggregation operators. More precisely, we utilize the Bonferroni mean (BM) aggregation operator for the enlargement or expansion of the tree while considering the concatenation between the parent and the slave tree. To the best of our knowledge, this is the first work that presents such an interrelationship handling fuzzy logic-based classifier model for EEG signal classification. The proposed algorithm is evaluated using two publicly available datasets, namely the Bonn University (Bonn) epileptic datasets and the Temple University Hospital (TUH) EEG subcorpus of abnormal (TUAB) and epilepsy (TUEP) datasets. This study considers different frames of the binary problem (i.e., healthy vs. seizure detection) and multi-class problem (i.e., healthy vs. seizure free vs. seizure) over the Bonn dataset and achieves more than 99% accuracy over the binary model by testing over all possible combinations of the available experimental dataset and 97.8% accuracy in multi-class model. In the case of TUAB and TUEP categories, the model achieves an accuracy of 88% in predicting normal to abnormal activities and 86% in detecting epilepsy and non-epilepsy within the signals. The outcomes derived from the proposed model outperform some existing studies available in the literature for EEG signal classification. Also, the model is efficient as it considers the uncertainty and association among the features while framing the classifier model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助wu采纳,获得10
1秒前
维棋完成签到 ,获得积分10
1秒前
1秒前
2秒前
Orange应助Micro9采纳,获得10
3秒前
3秒前
3秒前
清欲发布了新的文献求助10
3秒前
serendipity发布了新的文献求助10
3秒前
江竹兰完成签到,获得积分10
4秒前
素隐完成签到,获得积分20
4秒前
5秒前
a1313发布了新的文献求助10
5秒前
9700关注了科研通微信公众号
5秒前
汉堡包应助安静的小蚂蚁采纳,获得10
5秒前
77发布了新的文献求助10
6秒前
quartz完成签到,获得积分10
7秒前
科研小白发布了新的文献求助10
7秒前
7秒前
上官若男应助uuaopiggy采纳,获得30
7秒前
7秒前
过分着迷发布了新的文献求助10
8秒前
8秒前
清爽的忆梅完成签到,获得积分10
8秒前
研友_VZG7GZ应助nono采纳,获得10
8秒前
酷波er应助感动梦寒采纳,获得10
8秒前
9秒前
王则华完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
落雪琦叶完成签到,获得积分10
11秒前
科研通AI6应助伶俐的向彤采纳,获得10
11秒前
11秒前
11秒前
田様应助wind采纳,获得10
12秒前
12秒前
团子完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589486
求助须知:如何正确求助?哪些是违规求助? 4674213
关于积分的说明 14792351
捐赠科研通 4628515
什么是DOI,文献DOI怎么找? 2532297
邀请新用户注册赠送积分活动 1500964
关于科研通互助平台的介绍 1468454