Classification of epileptic EEG signals with the utilization of Bonferroni mean based fuzzy pattern tree

计算机科学 模式识别(心理学) 人工智能 脑电图 模糊逻辑 串联(数学) 分类器(UML) 小波 癫痫发作 二元分类 机器学习 数学 支持向量机 心理学 组合数学 精神科
作者
Gowtham Reddy N,Swati Rani Hait,Debashree Guha,Manjunatha Mahadevappa
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122424-122424 被引量:5
标识
DOI:10.1016/j.eswa.2023.122424
摘要

The Electroencephalogram (EEG) is an essential tool used to detect and investigate multiple neurological disorders within the human brain. However, examination and visualization of any such abnormalities in the brain through inspecting these EEG signals is a time-consuming and repetitive task for a neurologist. Hence, there is a need to develop a model that can automatically classify brain disorders based on the EEG signals. In this study, a novel fuzzy classification model is proposed for classifying the EEG signals. First, the discrete wavelet transform (DWT) technique is employed to decompose the signal into time-frequency sub-bands. Then, by utilizing these sub-bands, seven meaningful statistical features are extracted effectively for additional investigation purposes. Then, the retrieved features are provided to the fuzzy pattern tree classifier to obtain meaningful inferences from the data. Here, a distinctive structure of a fuzzy pattern tree is proposed by utilizing the interrelationship handling aggregation operators. More precisely, we utilize the Bonferroni mean (BM) aggregation operator for the enlargement or expansion of the tree while considering the concatenation between the parent and the slave tree. To the best of our knowledge, this is the first work that presents such an interrelationship handling fuzzy logic-based classifier model for EEG signal classification. The proposed algorithm is evaluated using two publicly available datasets, namely the Bonn University (Bonn) epileptic datasets and the Temple University Hospital (TUH) EEG subcorpus of abnormal (TUAB) and epilepsy (TUEP) datasets. This study considers different frames of the binary problem (i.e., healthy vs. seizure detection) and multi-class problem (i.e., healthy vs. seizure free vs. seizure) over the Bonn dataset and achieves more than 99% accuracy over the binary model by testing over all possible combinations of the available experimental dataset and 97.8% accuracy in multi-class model. In the case of TUAB and TUEP categories, the model achieves an accuracy of 88% in predicting normal to abnormal activities and 86% in detecting epilepsy and non-epilepsy within the signals. The outcomes derived from the proposed model outperform some existing studies available in the literature for EEG signal classification. Also, the model is efficient as it considers the uncertainty and association among the features while framing the classifier model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诡异乐园发布了新的文献求助10
2秒前
Jasper应助林璇璇采纳,获得10
2秒前
2秒前
bkagyin应助YANYAN采纳,获得10
2秒前
QIMUSEN发布了新的文献求助10
3秒前
泌尿小王完成签到,获得积分10
3秒前
5秒前
Chen完成签到,获得积分10
5秒前
5秒前
6秒前
领导范儿应助ZY采纳,获得10
6秒前
英俊的铭应助风中的太阳采纳,获得10
6秒前
眼睛大盼兰完成签到 ,获得积分10
8秒前
Justin发布了新的文献求助10
10秒前
sssssssoda发布了新的文献求助10
10秒前
10秒前
12秒前
想做只小博狗完成签到,获得积分10
12秒前
泌尿小王发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助20
12秒前
llll完成签到,获得积分10
13秒前
情怀应助予修采纳,获得10
14秒前
humorlife完成签到,获得积分10
14秒前
卷大喵完成签到,获得积分10
14秒前
15秒前
顾矜应助blueskyzhi采纳,获得10
15秒前
Denmark发布了新的文献求助10
15秒前
andy发布了新的文献求助20
15秒前
赵志浩完成签到,获得积分10
16秒前
彭于晏应助老实的抽屉采纳,获得30
16秒前
包容东蒽完成签到 ,获得积分10
16秒前
博士早日毕业完成签到,获得积分10
16秒前
薯片发布了新的文献求助10
17秒前
17秒前
YANYAN发布了新的文献求助10
18秒前
18秒前
领导范儿应助葱油饼采纳,获得10
19秒前
隐形静芙发布了新的文献求助10
20秒前
冰火油条虾完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010191
求助须知:如何正确求助?哪些是违规求助? 3550174
关于积分的说明 11305110
捐赠科研通 3284653
什么是DOI,文献DOI怎么找? 1810748
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451