亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of epileptic EEG signals with the utilization of Bonferroni mean based fuzzy pattern tree

计算机科学 模式识别(心理学) 人工智能 脑电图 模糊逻辑 串联(数学) 分类器(UML) 小波 癫痫发作 二元分类 机器学习 数学 支持向量机 心理学 组合数学 精神科
作者
Gowtham Reddy N,Swati Rani Hait,Debashree Guha,Manjunatha Mahadevappa
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122424-122424 被引量:5
标识
DOI:10.1016/j.eswa.2023.122424
摘要

The Electroencephalogram (EEG) is an essential tool used to detect and investigate multiple neurological disorders within the human brain. However, examination and visualization of any such abnormalities in the brain through inspecting these EEG signals is a time-consuming and repetitive task for a neurologist. Hence, there is a need to develop a model that can automatically classify brain disorders based on the EEG signals. In this study, a novel fuzzy classification model is proposed for classifying the EEG signals. First, the discrete wavelet transform (DWT) technique is employed to decompose the signal into time-frequency sub-bands. Then, by utilizing these sub-bands, seven meaningful statistical features are extracted effectively for additional investigation purposes. Then, the retrieved features are provided to the fuzzy pattern tree classifier to obtain meaningful inferences from the data. Here, a distinctive structure of a fuzzy pattern tree is proposed by utilizing the interrelationship handling aggregation operators. More precisely, we utilize the Bonferroni mean (BM) aggregation operator for the enlargement or expansion of the tree while considering the concatenation between the parent and the slave tree. To the best of our knowledge, this is the first work that presents such an interrelationship handling fuzzy logic-based classifier model for EEG signal classification. The proposed algorithm is evaluated using two publicly available datasets, namely the Bonn University (Bonn) epileptic datasets and the Temple University Hospital (TUH) EEG subcorpus of abnormal (TUAB) and epilepsy (TUEP) datasets. This study considers different frames of the binary problem (i.e., healthy vs. seizure detection) and multi-class problem (i.e., healthy vs. seizure free vs. seizure) over the Bonn dataset and achieves more than 99% accuracy over the binary model by testing over all possible combinations of the available experimental dataset and 97.8% accuracy in multi-class model. In the case of TUAB and TUEP categories, the model achieves an accuracy of 88% in predicting normal to abnormal activities and 86% in detecting epilepsy and non-epilepsy within the signals. The outcomes derived from the proposed model outperform some existing studies available in the literature for EEG signal classification. Also, the model is efficient as it considers the uncertainty and association among the features while framing the classifier model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助bcc666采纳,获得10
3秒前
3秒前
Elton发布了新的文献求助10
11秒前
12秒前
凯当以慷发布了新的文献求助10
18秒前
33秒前
沉静的雁菡应助欣欣采纳,获得10
34秒前
凯当以慷完成签到,获得积分10
37秒前
打打应助三个土拔鼠采纳,获得10
37秒前
kanoz完成签到 ,获得积分10
40秒前
automan发布了新的文献求助10
45秒前
automan完成签到,获得积分10
50秒前
53秒前
科研通AI5应助精灵夜雨采纳,获得10
53秒前
柏风华发布了新的文献求助10
56秒前
rnf完成签到,获得积分10
56秒前
59秒前
柏风华完成签到,获得积分10
1分钟前
zhouleiwang完成签到,获得积分10
1分钟前
爆米花应助zcl采纳,获得10
1分钟前
Honghao发布了新的文献求助10
1分钟前
rnf完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
一口辰发布了新的文献求助10
1分钟前
zcl发布了新的文献求助10
1分钟前
感动白开水完成签到,获得积分10
1分钟前
HEIKU应助Xiexie采纳,获得10
1分钟前
1分钟前
一口辰完成签到,获得积分20
1分钟前
2分钟前
2分钟前
成就的白竹完成签到,获得积分10
2分钟前
谷子完成签到 ,获得积分10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390797
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803