AFU-Net: A Novel U-Net Network for Rice Leaf Disease Segmentation

分割 残余物 编码器 交叉口(航空) 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 网(多面体) 特征提取 图层(电子) 像素 图像分割 数据挖掘 数学 算法 工程类 语言学 哲学 化学 几何学 有机化学 航空航天工程 操作系统
作者
Yang Liu,Huanhuan Zhang,Zhentao Zuo,Jun Peng,Xiaoyun Yu,Huibin Long,Yuanjun Liao
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:39 (5): 519-528
标识
DOI:10.13031/aea.15581
摘要

Highlights The attention mechanism enhances the ability of the model to learn specific semantic information in encoder. The redesigned residual structure deepens the network while reducing the number of parameters. The feature extraction module and feature fusion module obtain richer boundary feature information and effectively integrate output results from different levels. The mIoU, mPA, and Precision values of AFU-Net in the self-built dataset are 87.25%, 92.23%, and 99.67%, respectively. Abstract. Rice diseases adversely affect rice growth and yield. Precise spot segmentation helps to assess the severity of the disease so that appropriate control measures can be taken. In this article, we propose a segmentation method called AFU-Net for rice leaf diseases, and its performance is verified through experiments. Based on the traditional UNet, this method incorporates an attention mechanism, a residual module and a feature fusion module (FFM). The attention mechanism is embedded in skip connections, which enhances the learning of particular semantic features in the encoder layer. In addition, the residual module is integrated into the decoder layer, which deepens the network and enables it to extract richer semantic information. The proposed FFM structure effectively enhances the learning of boundary information and local detail features. The experimental results show that the mean intersection over union (mIoU), mean pixel accuracy (mPA) and Precision of the proposed model on the self-built rice leaf disease segmentation dataset are 87.25%, 92.23%, and 99.67%, respectively. All three evaluation indexes were improved over the control group, while the proposed model had the lowest number of parameters and displayed a good segmentation effect for smaller disease points and disease parts with less obvious characteristics. Keywords: Attention mechanism, Feature fusion module, Residual module, Rice leaves, UNet model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lz关闭了lz文献求助
3秒前
ljy发布了新的文献求助10
6秒前
小不点发布了新的文献求助10
7秒前
Akim应助小燕子采纳,获得10
9秒前
11秒前
Ashorecc发布了新的文献求助10
12秒前
不配.应助Ann采纳,获得10
13秒前
不配.应助传统的山槐采纳,获得10
15秒前
Damia完成签到,获得积分10
15秒前
斯文如娆完成签到 ,获得积分10
15秒前
17秒前
123完成签到 ,获得积分10
20秒前
Power完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
怕黑紫伊发布了新的文献求助10
23秒前
小燕子发布了新的文献求助10
25秒前
英俊的铭应助Gossip采纳,获得10
28秒前
lin完成签到 ,获得积分10
29秒前
30秒前
如意的白晴完成签到 ,获得积分10
31秒前
不配.应助小燕子采纳,获得10
34秒前
小辛完成签到,获得积分20
35秒前
无花果应助李思涵采纳,获得10
37秒前
思源应助付尊蕴采纳,获得10
43秒前
勇敢虫子不怕困难完成签到,获得积分10
43秒前
46秒前
47秒前
陆晓亦完成签到,获得积分10
48秒前
Radon发布了新的文献求助10
51秒前
52秒前
共享精神应助花落水自流采纳,获得10
52秒前
53秒前
李思涵发布了新的文献求助10
53秒前
小金发布了新的文献求助30
58秒前
59秒前
上官若男应助Su采纳,获得10
1分钟前
诚心爆米花完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079