Segment anything model for medical image analysis: An experimental study

计算机科学 人工智能 计算机视觉 模式识别(心理学) 图像(数学)
作者
Maciej A. Mazurowski,Haoyu Dong,Hanxue Gu,Jichen Yang,Nicholas Konz,Yixin Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:89: 102918-102918 被引量:248
标识
DOI:10.1016/j.media.2023.102918
摘要

Training segmentation models for medical images continues to be challenging due to the limited availability of data annotations. Segment Anything Model (SAM) is a foundation model trained on over 1 billion annotations, predominantly for natural images, that is intended to segment user-defined objects of interest in an interactive manner. While the model performance on natural images is impressive, medical image domains pose their own set of challenges. Here, we perform an extensive evaluation of SAM’s ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies. In our experiments, we generated point and box prompts for SAM using a standard method that simulates interactive segmentation. We report the following findings: (1) SAM’s performance based on single prompts highly varies depending on the dataset and the task, from IoU=0.1135 for spine MRI to IoU=0.8650 for hip X-ray. (2) Segmentation performance appears to be better for well-circumscribed objects with prompts with less ambiguity such as the segmentation of organs in computed tomography and poorer in various other scenarios such as the segmentation of brain tumors. (3) SAM performs notably better with box prompts than with point prompts. (4) SAM outperforms similar methods RITM, SimpleClick, and FocalClick in almost all single-point prompt settings. (5) When multiple-point prompts are provided iteratively, SAM’s performance generally improves only slightly while other methods’ performance improves to the level that surpasses SAM’s point-based performance. We also provide several illustrations for SAM’s performance on all tested datasets, iterative segmentation, and SAM’s behavior given prompt ambiguity. We conclude that SAM shows impressive zero-shot segmentation performance for certain medical imaging datasets, but moderate to poor performance for others. SAM has the potential to make a significant impact in automated medical image segmentation in medical imaging, but appropriate care needs to be applied when using it. Code for evaluation SAM is made publicly available at https://github.com/mazurowski-lab/segment-anything-medical-evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LDQ发布了新的文献求助10
1秒前
1秒前
2秒前
5秒前
劣根发布了新的文献求助30
5秒前
科研通AI5应助LDQ采纳,获得10
7秒前
lzl007完成签到 ,获得积分10
7秒前
8秒前
芒果椿发布了新的文献求助10
9秒前
10秒前
12秒前
皮崇知发布了新的文献求助10
13秒前
14秒前
wmc1357完成签到,获得积分10
16秒前
kiltorh发布了新的文献求助10
16秒前
Owen应助cuberar采纳,获得10
17秒前
17秒前
不甜可以吗完成签到,获得积分10
18秒前
18秒前
科研通AI2S应助乐荷采纳,获得10
18秒前
huangYinghua发布了新的文献求助10
20秒前
20秒前
假如有贾蓉完成签到,获得积分10
23秒前
TL完成签到,获得积分10
23秒前
23秒前
24秒前
大水发布了新的文献求助10
24秒前
吴吴发布了新的文献求助30
26秒前
huangYinghua完成签到,获得积分10
28秒前
frank发布了新的文献求助10
28秒前
31秒前
32秒前
32秒前
Bryan应助大水采纳,获得10
33秒前
Hello应助frank采纳,获得10
33秒前
34秒前
Brak发布了新的文献求助10
35秒前
深渊完成签到 ,获得积分10
36秒前
文静的芝完成签到 ,获得积分10
36秒前
搜集达人应助研友_8Y26PL采纳,获得10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432