Segment anything model for medical image analysis: An experimental study

分割 计算机科学 人工智能 模棱两可 集合(抽象数据类型) 点(几何) 计算机视觉 医学影像学 图像分割 模式识别(心理学) 图像(数学) 数学 几何学 程序设计语言
作者
Maciej A. Mazurowski,Haoyu Dong,Hanxue Gu,Jichen Yang,Nicholas Konz,Yixin Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:89: 102918-102918 被引量:203
标识
DOI:10.1016/j.media.2023.102918
摘要

Training segmentation models for medical images continues to be challenging due to the limited availability of data annotations. Segment Anything Model (SAM) is a foundation model trained on over 1 billion annotations, predominantly for natural images, that is intended to segment user-defined objects of interest in an interactive manner. While the model performance on natural images is impressive, medical image domains pose their own set of challenges. Here, we perform an extensive evaluation of SAM’s ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies. In our experiments, we generated point and box prompts for SAM using a standard method that simulates interactive segmentation. We report the following findings: (1) SAM’s performance based on single prompts highly varies depending on the dataset and the task, from IoU=0.1135 for spine MRI to IoU=0.8650 for hip X-ray. (2) Segmentation performance appears to be better for well-circumscribed objects with prompts with less ambiguity such as the segmentation of organs in computed tomography and poorer in various other scenarios such as the segmentation of brain tumors. (3) SAM performs notably better with box prompts than with point prompts. (4) SAM outperforms similar methods RITM, SimpleClick, and FocalClick in almost all single-point prompt settings. (5) When multiple-point prompts are provided iteratively, SAM’s performance generally improves only slightly while other methods’ performance improves to the level that surpasses SAM’s point-based performance. We also provide several illustrations for SAM’s performance on all tested datasets, iterative segmentation, and SAM’s behavior given prompt ambiguity. We conclude that SAM shows impressive zero-shot segmentation performance for certain medical imaging datasets, but moderate to poor performance for others. SAM has the potential to make a significant impact in automated medical image segmentation in medical imaging, but appropriate care needs to be applied when using it. Code for evaluation SAM is made publicly available at https://github.com/mazurowski-lab/segment-anything-medical-evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
gg发布了新的文献求助10
3秒前
hyde完成签到,获得积分10
3秒前
Nara2021完成签到,获得积分10
3秒前
4秒前
肉肉发布了新的文献求助10
7秒前
OeO完成签到 ,获得积分10
7秒前
威武书桃发布了新的文献求助10
8秒前
科研通AI2S应助Aprilapple采纳,获得10
8秒前
科研通AI2S应助宓函采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
11秒前
坚强亦丝应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
lemonfang给lemonfang的求助进行了留言
14秒前
Hello应助gg采纳,获得10
15秒前
啥时候吃火锅完成签到 ,获得积分0
16秒前
威武书桃完成签到,获得积分10
18秒前
长情立诚完成签到,获得积分10
22秒前
研友_VZG7GZ应助夹心采纳,获得30
23秒前
白白熊完成签到 ,获得积分10
23秒前
小二郎应助帅气的藏鸟采纳,获得10
24秒前
xuxieyu发布了新的文献求助10
24秒前
走着完成签到,获得积分10
25秒前
撒个人完成签到 ,获得积分10
31秒前
英姑应助xuxieyu采纳,获得10
31秒前
33秒前
村长热爱美丽完成签到 ,获得积分10
36秒前
夹心发布了新的文献求助30
37秒前
sxy完成签到,获得积分20
40秒前
42秒前
mhy发布了新的文献求助10
42秒前
43秒前
发酱完成签到,获得积分10
45秒前
小眼儿发布了新的文献求助10
46秒前
Puddingo完成签到,获得积分10
49秒前
51秒前
MAVS完成签到,获得积分10
52秒前
53秒前
细心冰之完成签到,获得积分10
53秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140260
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797743
捐赠科研通 2447527
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194