An Efficient License Plate Detection Approach With Deep Convolutional Neural Networks in Unconstrained Scenarios

计算机科学 卷积神经网络 人工智能 许可证 目标检测 失真(音乐) 趋同(经济学) 职位(财务) 透视失真 探测器 功能(生物学) 计算机视觉 深度学习 算法 模式识别(心理学) 图像(数学) 电信 放大器 带宽(计算) 财务 进化生物学 经济 生物 经济增长 操作系统
作者
Jianing Wei,Mingshan Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85626-85639
标识
DOI:10.1109/access.2023.3301122
摘要

License plate (LP) detection is a crucial task for Automatic License Plate Recognition (ALPR) systems. Most existing LP detection networks can detect License plates, but their accuracy suffers when license plates (LPs) are tilted or deformed due to perspective distortion. This is because these detectors can only detect the region where the LP is located, and even the most advanced object detectors struggle in unconstrained scenarios. To address this problem, we propose a lightweight Deformation Planar Object Detection Network (DPOD-NET), which can correct the deformed LPs of various vehicles (e.g., car, truck, electric motorcycle, bus) by detecting the LP corner points. Accordingly, the distortion associated with perspective is mitigated when we adjust the LP to a frontal parallel view through the LP corners. To optimize small errors between the predicted and true values of the LP corner points, we propose an LPWing loss function. Compared with the commonly used L1 function, the LPWing loss is derivable at the zero position, and the gradient will be bigger when errors are smaller. This enables the model to converge faster at the position where the error is close to zero, resulting in better convergence when the error between the true values and predicted values is small. In addition, the paper presents a stochastic multi-scale image detail boosting strategy, which effectively augments the dataset. Finally, to objectively evaluate the effectiveness of LP corner detection approaches, we present a dataset (LPDE-4K) including various LP types (e.g., color, country, illumination, distortion). We test the performance on various datasets, and our approach outperforms other existing state-of-the-art approaches in terms of higher accuracy and lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆似狮完成签到 ,获得积分10
刚刚
1秒前
苍蝇搓手完成签到,获得积分20
1秒前
壹拾完成签到,获得积分10
2秒前
wan发布了新的文献求助10
3秒前
斯文败类应助rsimap360采纳,获得10
3秒前
3秒前
沉静的乘风完成签到,获得积分10
4秒前
杨pangpang完成签到,获得积分10
4秒前
木木发布了新的文献求助10
4秒前
飞竹天寻发布了新的文献求助10
4秒前
内向小熊猫完成签到,获得积分10
5秒前
6秒前
魏嘉淇发布了新的文献求助10
6秒前
gazi发布了新的文献求助30
6秒前
阿林琳琳发布了新的文献求助10
6秒前
ALDRC完成签到,获得积分10
7秒前
7秒前
7秒前
太叔明辉完成签到,获得积分10
8秒前
Orange应助苍蝇搓手采纳,获得10
8秒前
8秒前
Orange应助小恶心采纳,获得10
9秒前
yyyyyggggg发布了新的文献求助10
10秒前
10秒前
10秒前
淡定依玉完成签到,获得积分20
12秒前
haimianbaobao完成签到 ,获得积分10
12秒前
奋斗冬萱完成签到,获得积分10
12秒前
清脆的书桃完成签到,获得积分10
12秒前
12秒前
Paddi发布了新的文献求助10
13秒前
果果昔关注了科研通微信公众号
13秒前
归尘应助lalala_ola采纳,获得10
14秒前
郑方形完成签到,获得积分10
14秒前
吉利完成签到,获得积分10
15秒前
衣锦夜行完成签到,获得积分10
15秒前
15秒前
duoduo完成签到,获得积分10
15秒前
搜集达人应助月饼同学采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149