An Efficient License Plate Detection Approach With Deep Convolutional Neural Networks in Unconstrained Scenarios

计算机科学 卷积神经网络 人工智能 许可证 目标检测 失真(音乐) 趋同(经济学) 职位(财务) 透视失真 探测器 功能(生物学) 计算机视觉 深度学习 算法 模式识别(心理学) 图像(数学) 电信 放大器 带宽(计算) 财务 进化生物学 经济 生物 经济增长 操作系统
作者
Jianing Wei,Mingshan Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85626-85639
标识
DOI:10.1109/access.2023.3301122
摘要

License plate (LP) detection is a crucial task for Automatic License Plate Recognition (ALPR) systems. Most existing LP detection networks can detect License plates, but their accuracy suffers when license plates (LPs) are tilted or deformed due to perspective distortion. This is because these detectors can only detect the region where the LP is located, and even the most advanced object detectors struggle in unconstrained scenarios. To address this problem, we propose a lightweight Deformation Planar Object Detection Network (DPOD-NET), which can correct the deformed LPs of various vehicles (e.g., car, truck, electric motorcycle, bus) by detecting the LP corner points. Accordingly, the distortion associated with perspective is mitigated when we adjust the LP to a frontal parallel view through the LP corners. To optimize small errors between the predicted and true values of the LP corner points, we propose an LPWing loss function. Compared with the commonly used L1 function, the LPWing loss is derivable at the zero position, and the gradient will be bigger when errors are smaller. This enables the model to converge faster at the position where the error is close to zero, resulting in better convergence when the error between the true values and predicted values is small. In addition, the paper presents a stochastic multi-scale image detail boosting strategy, which effectively augments the dataset. Finally, to objectively evaluate the effectiveness of LP corner detection approaches, we present a dataset (LPDE-4K) including various LP types (e.g., color, country, illumination, distortion). We test the performance on various datasets, and our approach outperforms other existing state-of-the-art approaches in terms of higher accuracy and lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无花果应助feifeifei采纳,获得10
刚刚
开放如天完成签到 ,获得积分10
1秒前
laber应助fangfeng采纳,获得50
1秒前
搜集达人应助三峡好人采纳,获得10
1秒前
1秒前
2秒前
852应助海上钢琴家采纳,获得10
2秒前
luo发布了新的文献求助10
2秒前
2秒前
大个应助追尾的猫采纳,获得10
3秒前
CodeCraft应助闪闪的大炮采纳,获得10
4秒前
科研通AI6应助何小明采纳,获得10
4秒前
顾矜应助Flora采纳,获得10
4秒前
慕青应助奥丁蒂法采纳,获得10
4秒前
芫华发布了新的文献求助10
5秒前
6秒前
科研通AI6应助迷路的曼凡采纳,获得30
6秒前
照相机发布了新的文献求助10
6秒前
万能图书馆应助鲤鱼山人采纳,获得10
7秒前
7秒前
8秒前
抗氧剂完成签到,获得积分10
8秒前
lvlv发布了新的文献求助30
8秒前
cjchem完成签到,获得积分10
8秒前
8秒前
8秒前
螺蛳粉完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
597发布了新的文献求助10
9秒前
10秒前
10秒前
Miya完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
hmj发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824