An Efficient License Plate Detection Approach With Deep Convolutional Neural Networks in Unconstrained Scenarios

计算机科学 卷积神经网络 人工智能 许可证 目标检测 失真(音乐) 趋同(经济学) 职位(财务) 透视失真 探测器 功能(生物学) 计算机视觉 深度学习 算法 模式识别(心理学) 图像(数学) 电信 操作系统 经济 放大器 生物 进化生物学 带宽(计算) 经济增长 财务
作者
Jianing Wei,Mingshan Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85626-85639
标识
DOI:10.1109/access.2023.3301122
摘要

License plate (LP) detection is a crucial task for Automatic License Plate Recognition (ALPR) systems. Most existing LP detection networks can detect License plates, but their accuracy suffers when license plates (LPs) are tilted or deformed due to perspective distortion. This is because these detectors can only detect the region where the LP is located, and even the most advanced object detectors struggle in unconstrained scenarios. To address this problem, we propose a lightweight Deformation Planar Object Detection Network (DPOD-NET), which can correct the deformed LPs of various vehicles (e.g., car, truck, electric motorcycle, bus) by detecting the LP corner points. Accordingly, the distortion associated with perspective is mitigated when we adjust the LP to a frontal parallel view through the LP corners. To optimize small errors between the predicted and true values of the LP corner points, we propose an LPWing loss function. Compared with the commonly used L1 function, the LPWing loss is derivable at the zero position, and the gradient will be bigger when errors are smaller. This enables the model to converge faster at the position where the error is close to zero, resulting in better convergence when the error between the true values and predicted values is small. In addition, the paper presents a stochastic multi-scale image detail boosting strategy, which effectively augments the dataset. Finally, to objectively evaluate the effectiveness of LP corner detection approaches, we present a dataset (LPDE-4K) including various LP types (e.g., color, country, illumination, distortion). We test the performance on various datasets, and our approach outperforms other existing state-of-the-art approaches in terms of higher accuracy and lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sfliufighting完成签到,获得积分20
刚刚
李怀玉完成签到,获得积分10
刚刚
yier完成签到,获得积分10
刚刚
right完成签到 ,获得积分10
1秒前
上官若男应助Luka采纳,获得10
1秒前
LC完成签到 ,获得积分10
1秒前
爱虹遍野完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Zikc完成签到,获得积分10
2秒前
yaolei完成签到,获得积分10
2秒前
聪慧小霜应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
聪慧小霜应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
聪慧小霜应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
正己化人应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
轻松峻熙完成签到,获得积分10
3秒前
光亮青柏完成签到 ,获得积分10
4秒前
阿龙完成签到,获得积分10
4秒前
善学以致用应助1111采纳,获得10
5秒前
花卷发布了新的文献求助200
6秒前
daheeeee完成签到,获得积分10
7秒前
rorolinlin发布了新的文献求助10
7秒前
小兔叽完成签到,获得积分10
7秒前
py999发布了新的文献求助10
8秒前
hellozijia完成签到,获得积分10
8秒前
tesla完成签到,获得积分20
9秒前
外向的烨霖完成签到,获得积分10
9秒前
orangelion完成签到,获得积分10
9秒前
jzmupyj完成签到,获得积分10
10秒前
10秒前
Xiaoming85完成签到,获得积分10
11秒前
加一完成签到,获得积分10
11秒前
羊小受完成签到 ,获得积分10
11秒前
sss完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328