亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient License Plate Detection Approach With Deep Convolutional Neural Networks in Unconstrained Scenarios

计算机科学 卷积神经网络 人工智能 许可证 目标检测 失真(音乐) 趋同(经济学) 职位(财务) 透视失真 探测器 功能(生物学) 计算机视觉 深度学习 算法 模式识别(心理学) 图像(数学) 电信 操作系统 经济 放大器 生物 进化生物学 带宽(计算) 经济增长 财务
作者
Jianing Wei,Mingshan Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85626-85639
标识
DOI:10.1109/access.2023.3301122
摘要

License plate (LP) detection is a crucial task for Automatic License Plate Recognition (ALPR) systems. Most existing LP detection networks can detect License plates, but their accuracy suffers when license plates (LPs) are tilted or deformed due to perspective distortion. This is because these detectors can only detect the region where the LP is located, and even the most advanced object detectors struggle in unconstrained scenarios. To address this problem, we propose a lightweight Deformation Planar Object Detection Network (DPOD-NET), which can correct the deformed LPs of various vehicles (e.g., car, truck, electric motorcycle, bus) by detecting the LP corner points. Accordingly, the distortion associated with perspective is mitigated when we adjust the LP to a frontal parallel view through the LP corners. To optimize small errors between the predicted and true values of the LP corner points, we propose an LPWing loss function. Compared with the commonly used L1 function, the LPWing loss is derivable at the zero position, and the gradient will be bigger when errors are smaller. This enables the model to converge faster at the position where the error is close to zero, resulting in better convergence when the error between the true values and predicted values is small. In addition, the paper presents a stochastic multi-scale image detail boosting strategy, which effectively augments the dataset. Finally, to objectively evaluate the effectiveness of LP corner detection approaches, we present a dataset (LPDE-4K) including various LP types (e.g., color, country, illumination, distortion). We test the performance on various datasets, and our approach outperforms other existing state-of-the-art approaches in terms of higher accuracy and lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小智发布了新的文献求助10
7秒前
NexusExplorer应助chenzheng采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
41秒前
Ava应助科研通管家采纳,获得10
41秒前
ceeray23应助科研通管家采纳,获得10
41秒前
46秒前
49秒前
Chris完成签到 ,获得积分0
53秒前
星启完成签到 ,获得积分10
53秒前
01完成签到 ,获得积分10
56秒前
小橘子吃傻子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
山山完成签到,获得积分20
1分钟前
山山发布了新的文献求助10
1分钟前
1分钟前
苏苏发布了新的文献求助10
1分钟前
激情的代曼完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
爆米花应助小智采纳,获得10
1分钟前
1分钟前
浮游应助激情的代曼采纳,获得10
1分钟前
aaron完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小龙完成签到,获得积分10
1分钟前
斯文败类应助科研猫头鹰采纳,获得10
1分钟前
小智发布了新的文献求助10
1分钟前
nxy完成签到 ,获得积分10
1分钟前
Owen应助EaRnn采纳,获得10
1分钟前
玫瑰遇上奶油完成签到 ,获得积分10
2分钟前
赵雨欣完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小巧尔曼完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578