亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient License Plate Detection Approach With Deep Convolutional Neural Networks in Unconstrained Scenarios

计算机科学 卷积神经网络 人工智能 许可证 目标检测 失真(音乐) 趋同(经济学) 职位(财务) 透视失真 探测器 功能(生物学) 计算机视觉 深度学习 算法 模式识别(心理学) 图像(数学) 电信 放大器 带宽(计算) 财务 进化生物学 经济 生物 经济增长 操作系统
作者
Jianing Wei,Mingshan Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85626-85639
标识
DOI:10.1109/access.2023.3301122
摘要

License plate (LP) detection is a crucial task for Automatic License Plate Recognition (ALPR) systems. Most existing LP detection networks can detect License plates, but their accuracy suffers when license plates (LPs) are tilted or deformed due to perspective distortion. This is because these detectors can only detect the region where the LP is located, and even the most advanced object detectors struggle in unconstrained scenarios. To address this problem, we propose a lightweight Deformation Planar Object Detection Network (DPOD-NET), which can correct the deformed LPs of various vehicles (e.g., car, truck, electric motorcycle, bus) by detecting the LP corner points. Accordingly, the distortion associated with perspective is mitigated when we adjust the LP to a frontal parallel view through the LP corners. To optimize small errors between the predicted and true values of the LP corner points, we propose an LPWing loss function. Compared with the commonly used L1 function, the LPWing loss is derivable at the zero position, and the gradient will be bigger when errors are smaller. This enables the model to converge faster at the position where the error is close to zero, resulting in better convergence when the error between the true values and predicted values is small. In addition, the paper presents a stochastic multi-scale image detail boosting strategy, which effectively augments the dataset. Finally, to objectively evaluate the effectiveness of LP corner detection approaches, we present a dataset (LPDE-4K) including various LP types (e.g., color, country, illumination, distortion). We test the performance on various datasets, and our approach outperforms other existing state-of-the-art approaches in terms of higher accuracy and lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助无心烛采纳,获得10
12秒前
研友_892kOL完成签到,获得积分0
1分钟前
1分钟前
1分钟前
无心烛发布了新的文献求助10
1分钟前
研友_VZG7GZ应助无心烛采纳,获得10
1分钟前
Ava应助南芜山为伴采纳,获得10
1分钟前
2分钟前
2分钟前
南芜山为伴完成签到,获得积分10
2分钟前
2分钟前
kuoping完成签到,获得积分0
2分钟前
7788完成签到,获得积分10
2分钟前
无心烛发布了新的文献求助10
2分钟前
2分钟前
aiiLnT发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
aiiLnT完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助无心烛采纳,获得30
2分钟前
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
4分钟前
华仔应助liang采纳,获得10
4分钟前
小zz完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
liang发布了新的文献求助10
4分钟前
情怀应助liang采纳,获得10
4分钟前
Kevin完成签到,获得积分10
5分钟前
5分钟前
无心烛发布了新的文献求助30
5分钟前
Fortune完成签到,获得积分10
5分钟前
5分钟前
走啊走应助科研通管家采纳,获得10
5分钟前
走啊走应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI5应助无心烛采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161591
求助须知:如何正确求助?哪些是违规求助? 4355017
关于积分的说明 13559148
捐赠科研通 4199756
什么是DOI,文献DOI怎么找? 2303281
邀请新用户注册赠送积分活动 1303289
关于科研通互助平台的介绍 1249159