Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration

计算机科学 人工智能 一般化 任务(项目管理) 深度学习 机器学习 学习迁移 工程类 数学 系统工程 数学分析
作者
Weimin Tan,Chenxi Ma,Weimin Tan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3208267/v1
摘要

Abstract Fluorescence microscopy image restoration (FMIR) has received wide attention in the life science field and led to significant progress, benefiting from the deep learning (DL) technology. However, most of the current DL-based FMIR methods need to train a task-specific deep model from scratch on a specific dataset for each FMIR problem, such as super-resolution (SR), denoising, isotropic reconstruction, projection, volume reconstruction, etc. The performance and practicability of these FMIR models are limited due to the troublesome training, the difficulty in obtaining high-quality training images, and the limited generalization ability. Nowadays, the pre-trained foundation models have obtained significant breakthroughs in computer vision (CV) and natural language processing (NLP), demonstrating the powerful effect of the pre-training and fine-tuning paradigm. Here, inspired by the huge success of the pre-trained foundation models in the artificial intelligence (AI), we provide a universal solution for different FMIR problems by presenting a unified FMIR foundation model (UniFMIR), achieving higher image precision, better generalization performance, efficient and low-cost training of the task-specific model. The experimental results on five FMIR tasks and nine datasets, covering a wide range of fluorescence microscopy imaging modalities and biological samples, demonstrate the strong capability of the UniFMIR to handle various FMIR situations with a single model. The UniFMIR, pre-trained on the large-scale dataset we collected, can effectively transfer the knowledge learned during the pre-training to a specific FMIR situation by fine-tuning and can obtain a significant performance improvement, uncovering clear nanoscale cell structures and facilitating high-quality imaging in live samples. This work first explores the potential of applying the foundation model for FMIR. We hope to provide some inspiration for more researchers to further explore the DL-based FMIR and to trigger new research highlights of the FMIR model pre-training and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田二亩完成签到,获得积分10
1秒前
jianjiao完成签到,获得积分10
1秒前
tuzi完成签到,获得积分0
2秒前
kk完成签到,获得积分10
2秒前
lilei完成签到,获得积分10
2秒前
fixing发布了新的文献求助10
2秒前
旺旺雪饼完成签到,获得积分10
2秒前
IVY1300完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
ly完成签到,获得积分10
7秒前
严锦强完成签到,获得积分10
8秒前
xuan完成签到,获得积分10
9秒前
圣人海完成签到,获得积分10
9秒前
大模型应助淡淡的一手采纳,获得10
9秒前
隐形曼青应助fixing采纳,获得10
9秒前
章鱼小丸子完成签到 ,获得积分10
10秒前
11秒前
ZZZZZ完成签到,获得积分10
11秒前
朴实海亦完成签到,获得积分10
11秒前
求学路上完成签到,获得积分10
12秒前
清风徐来完成签到,获得积分10
12秒前
陀思妥耶夫斯基完成签到 ,获得积分10
12秒前
孙梁子完成签到,获得积分10
13秒前
神勇语堂完成签到 ,获得积分10
15秒前
小帅完成签到,获得积分10
15秒前
蔡翌文完成签到 ,获得积分10
15秒前
18秒前
18秒前
来自三百发布了新的文献求助10
18秒前
乐观的忆枫完成签到,获得积分10
20秒前
温暖大米完成签到 ,获得积分10
20秒前
高贵的晓筠完成签到 ,获得积分10
22秒前
烯灯完成签到,获得积分10
22秒前
欣慰的书本完成签到 ,获得积分10
23秒前
23秒前
马儿饿了要吃草完成签到,获得积分10
25秒前
活力的听露完成签到 ,获得积分10
26秒前
1111发布了新的文献求助10
27秒前
娇气的天亦完成签到,获得积分10
27秒前
一一完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671