Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration

计算机科学 人工智能 一般化 任务(项目管理) 深度学习 机器学习 学习迁移 工程类 数学 系统工程 数学分析
作者
Weimin Tan,Chenxi Ma,Weimin Tan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3208267/v1
摘要

Abstract Fluorescence microscopy image restoration (FMIR) has received wide attention in the life science field and led to significant progress, benefiting from the deep learning (DL) technology. However, most of the current DL-based FMIR methods need to train a task-specific deep model from scratch on a specific dataset for each FMIR problem, such as super-resolution (SR), denoising, isotropic reconstruction, projection, volume reconstruction, etc. The performance and practicability of these FMIR models are limited due to the troublesome training, the difficulty in obtaining high-quality training images, and the limited generalization ability. Nowadays, the pre-trained foundation models have obtained significant breakthroughs in computer vision (CV) and natural language processing (NLP), demonstrating the powerful effect of the pre-training and fine-tuning paradigm. Here, inspired by the huge success of the pre-trained foundation models in the artificial intelligence (AI), we provide a universal solution for different FMIR problems by presenting a unified FMIR foundation model (UniFMIR), achieving higher image precision, better generalization performance, efficient and low-cost training of the task-specific model. The experimental results on five FMIR tasks and nine datasets, covering a wide range of fluorescence microscopy imaging modalities and biological samples, demonstrate the strong capability of the UniFMIR to handle various FMIR situations with a single model. The UniFMIR, pre-trained on the large-scale dataset we collected, can effectively transfer the knowledge learned during the pre-training to a specific FMIR situation by fine-tuning and can obtain a significant performance improvement, uncovering clear nanoscale cell structures and facilitating high-quality imaging in live samples. This work first explores the potential of applying the foundation model for FMIR. We hope to provide some inspiration for more researchers to further explore the DL-based FMIR and to trigger new research highlights of the FMIR model pre-training and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一氧化二氢完成签到,获得积分10
5秒前
凡事发生必有利于我完成签到,获得积分10
6秒前
yihaiqin完成签到 ,获得积分10
10秒前
轩辕剑身完成签到,获得积分0
10秒前
coolkid完成签到 ,获得积分0
11秒前
你怎么那么美完成签到,获得积分10
11秒前
游艺完成签到 ,获得积分10
14秒前
冬月完成签到 ,获得积分10
14秒前
薛乎虚完成签到 ,获得积分10
15秒前
16秒前
大胖完成签到,获得积分10
16秒前
野火197完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
April完成签到,获得积分10
24秒前
周舟完成签到 ,获得积分10
27秒前
V_I_G完成签到 ,获得积分10
28秒前
nick完成签到,获得积分10
29秒前
高高高完成签到 ,获得积分10
32秒前
彪壮的亦瑶完成签到 ,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
Perry应助科研通管家采纳,获得60
35秒前
Akim应助科研通管家采纳,获得10
35秒前
鱼雷完成签到,获得积分10
36秒前
廿伊发布了新的文献求助10
38秒前
我是125完成签到,获得积分10
40秒前
依人如梦完成签到 ,获得积分10
41秒前
42秒前
PDIF-CN2完成签到,获得积分10
46秒前
雪雪完成签到 ,获得积分10
47秒前
48秒前
Willow完成签到,获得积分10
51秒前
研研研完成签到,获得积分10
52秒前
大橙子发布了新的文献求助10
54秒前
dejiangcj完成签到 ,获得积分10
55秒前
无味完成签到,获得积分10
56秒前
大气的尔蓝完成签到,获得积分10
57秒前
科研通AI5应助普鲁卡因采纳,获得10
58秒前
略略略完成签到 ,获得积分10
1分钟前
zqlxueli完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022