Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration

计算机科学 人工智能 一般化 任务(项目管理) 深度学习 机器学习 学习迁移 工程类 数学 系统工程 数学分析
作者
Weimin Tan,Chenxi Ma,Weimin Tan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3208267/v1
摘要

Abstract Fluorescence microscopy image restoration (FMIR) has received wide attention in the life science field and led to significant progress, benefiting from the deep learning (DL) technology. However, most of the current DL-based FMIR methods need to train a task-specific deep model from scratch on a specific dataset for each FMIR problem, such as super-resolution (SR), denoising, isotropic reconstruction, projection, volume reconstruction, etc. The performance and practicability of these FMIR models are limited due to the troublesome training, the difficulty in obtaining high-quality training images, and the limited generalization ability. Nowadays, the pre-trained foundation models have obtained significant breakthroughs in computer vision (CV) and natural language processing (NLP), demonstrating the powerful effect of the pre-training and fine-tuning paradigm. Here, inspired by the huge success of the pre-trained foundation models in the artificial intelligence (AI), we provide a universal solution for different FMIR problems by presenting a unified FMIR foundation model (UniFMIR), achieving higher image precision, better generalization performance, efficient and low-cost training of the task-specific model. The experimental results on five FMIR tasks and nine datasets, covering a wide range of fluorescence microscopy imaging modalities and biological samples, demonstrate the strong capability of the UniFMIR to handle various FMIR situations with a single model. The UniFMIR, pre-trained on the large-scale dataset we collected, can effectively transfer the knowledge learned during the pre-training to a specific FMIR situation by fine-tuning and can obtain a significant performance improvement, uncovering clear nanoscale cell structures and facilitating high-quality imaging in live samples. This work first explores the potential of applying the foundation model for FMIR. We hope to provide some inspiration for more researchers to further explore the DL-based FMIR and to trigger new research highlights of the FMIR model pre-training and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JoaquinH完成签到,获得积分10
刚刚
火星上白羊完成签到,获得积分10
刚刚
scinature发布了新的文献求助10
刚刚
3秒前
王大锤女士完成签到 ,获得积分10
3秒前
ccx完成签到,获得积分10
6秒前
苦哈哈完成签到,获得积分10
7秒前
闫132发布了新的文献求助10
8秒前
8秒前
小石榴爸爸完成签到 ,获得积分10
8秒前
scinature完成签到,获得积分10
12秒前
wjw发布了新的文献求助10
13秒前
孤巷的猫完成签到,获得积分10
13秒前
科研通AI2S应助woodheart采纳,获得10
14秒前
14秒前
byby完成签到,获得积分10
14秒前
tg2024完成签到 ,获得积分10
18秒前
今天也要好好学习完成签到,获得积分10
18秒前
姜乐菱发布了新的文献求助10
18秒前
qian完成签到 ,获得积分10
19秒前
wyr发布了新的文献求助10
19秒前
OFish完成签到,获得积分10
20秒前
20秒前
一一完成签到 ,获得积分10
21秒前
matt完成签到,获得积分10
21秒前
gyx完成签到,获得积分10
24秒前
LOVER完成签到 ,获得积分10
26秒前
ajiduo发布了新的文献求助10
26秒前
yiyixt发布了新的文献求助50
28秒前
豪哥大大完成签到,获得积分10
28秒前
wyr完成签到,获得积分10
28秒前
平淡的寄风完成签到,获得积分10
31秒前
SaSa完成签到,获得积分10
32秒前
青青完成签到,获得积分10
32秒前
虫虫冲呀冲完成签到 ,获得积分10
33秒前
Akim应助一年八篇sci采纳,获得10
35秒前
福娃完成签到,获得积分10
35秒前
龙痕完成签到,获得积分10
36秒前
张涛完成签到 ,获得积分10
37秒前
姜乐菱完成签到,获得积分10
37秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830388
关于积分的说明 7976619
捐赠科研通 2491970
什么是DOI,文献DOI怎么找? 1329146
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954