Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration

计算机科学 人工智能 一般化 任务(项目管理) 深度学习 机器学习 学习迁移 工程类 数学 系统工程 数学分析
作者
Weimin Tan,Chenxi Ma,Weimin Tan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3208267/v1
摘要

Abstract Fluorescence microscopy image restoration (FMIR) has received wide attention in the life science field and led to significant progress, benefiting from the deep learning (DL) technology. However, most of the current DL-based FMIR methods need to train a task-specific deep model from scratch on a specific dataset for each FMIR problem, such as super-resolution (SR), denoising, isotropic reconstruction, projection, volume reconstruction, etc. The performance and practicability of these FMIR models are limited due to the troublesome training, the difficulty in obtaining high-quality training images, and the limited generalization ability. Nowadays, the pre-trained foundation models have obtained significant breakthroughs in computer vision (CV) and natural language processing (NLP), demonstrating the powerful effect of the pre-training and fine-tuning paradigm. Here, inspired by the huge success of the pre-trained foundation models in the artificial intelligence (AI), we provide a universal solution for different FMIR problems by presenting a unified FMIR foundation model (UniFMIR), achieving higher image precision, better generalization performance, efficient and low-cost training of the task-specific model. The experimental results on five FMIR tasks and nine datasets, covering a wide range of fluorescence microscopy imaging modalities and biological samples, demonstrate the strong capability of the UniFMIR to handle various FMIR situations with a single model. The UniFMIR, pre-trained on the large-scale dataset we collected, can effectively transfer the knowledge learned during the pre-training to a specific FMIR situation by fine-tuning and can obtain a significant performance improvement, uncovering clear nanoscale cell structures and facilitating high-quality imaging in live samples. This work first explores the potential of applying the foundation model for FMIR. We hope to provide some inspiration for more researchers to further explore the DL-based FMIR and to trigger new research highlights of the FMIR model pre-training and development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿蚁新醅酒呀完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
怕黑的樱完成签到 ,获得积分10
1秒前
strawberry完成签到,获得积分10
1秒前
liang发布了新的文献求助10
1秒前
popo发布了新的文献求助10
2秒前
2秒前
3秒前
将将将将发布了新的文献求助10
3秒前
4秒前
阔达板栗发布了新的文献求助10
4秒前
科研孙完成签到,获得积分10
4秒前
彼岸完成签到,获得积分10
4秒前
SMPs完成签到,获得积分10
4秒前
April完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
ZF完成签到,获得积分20
7秒前
可爱的函函应助swsx1317采纳,获得10
7秒前
怕孤独的海瑶完成签到,获得积分10
8秒前
光而不耀发布了新的文献求助10
8秒前
paff发布了新的文献求助20
9秒前
橘子发布了新的文献求助10
10秒前
LLL发布了新的文献求助10
10秒前
小马甲应助Sledge采纳,获得10
10秒前
吴洲凤发布了新的文献求助10
10秒前
10秒前
10秒前
yuan发布了新的文献求助20
11秒前
大q完成签到,获得积分10
11秒前
超超~给超超~的求助进行了留言
11秒前
魁梧的文轩完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
维奈克拉应助Truman采纳,获得10
12秒前
荆哲完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494