亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration

计算机科学 人工智能 一般化 任务(项目管理) 深度学习 机器学习 学习迁移 工程类 数学 系统工程 数学分析
作者
Weimin Tan,Chenxi Ma,Weimin Tan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3208267/v1
摘要

Abstract Fluorescence microscopy image restoration (FMIR) has received wide attention in the life science field and led to significant progress, benefiting from the deep learning (DL) technology. However, most of the current DL-based FMIR methods need to train a task-specific deep model from scratch on a specific dataset for each FMIR problem, such as super-resolution (SR), denoising, isotropic reconstruction, projection, volume reconstruction, etc. The performance and practicability of these FMIR models are limited due to the troublesome training, the difficulty in obtaining high-quality training images, and the limited generalization ability. Nowadays, the pre-trained foundation models have obtained significant breakthroughs in computer vision (CV) and natural language processing (NLP), demonstrating the powerful effect of the pre-training and fine-tuning paradigm. Here, inspired by the huge success of the pre-trained foundation models in the artificial intelligence (AI), we provide a universal solution for different FMIR problems by presenting a unified FMIR foundation model (UniFMIR), achieving higher image precision, better generalization performance, efficient and low-cost training of the task-specific model. The experimental results on five FMIR tasks and nine datasets, covering a wide range of fluorescence microscopy imaging modalities and biological samples, demonstrate the strong capability of the UniFMIR to handle various FMIR situations with a single model. The UniFMIR, pre-trained on the large-scale dataset we collected, can effectively transfer the knowledge learned during the pre-training to a specific FMIR situation by fine-tuning and can obtain a significant performance improvement, uncovering clear nanoscale cell structures and facilitating high-quality imaging in live samples. This work first explores the potential of applying the foundation model for FMIR. We hope to provide some inspiration for more researchers to further explore the DL-based FMIR and to trigger new research highlights of the FMIR model pre-training and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
8秒前
lf发布了新的文献求助10
11秒前
13秒前
伯赏元彤发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
17秒前
Djnsbj发布了新的文献求助10
18秒前
平淡道天完成签到,获得积分10
25秒前
30秒前
33秒前
伯赏元彤完成签到,获得积分10
41秒前
自由觅松完成签到,获得积分10
47秒前
47秒前
47秒前
Perion完成签到 ,获得积分10
49秒前
自由觅松发布了新的文献求助20
51秒前
1分钟前
李健应助为神指路采纳,获得10
1分钟前
风轻萤完成签到,获得积分10
1分钟前
1分钟前
1分钟前
为神指路发布了新的文献求助10
1分钟前
背后梦安发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
李治稳发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
lQ发布了新的文献求助10
2分钟前
Hillson完成签到,获得积分10
2分钟前
lQ关闭了lQ文献求助
2分钟前
tracyzhang完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
明亮皮卡丘完成签到,获得积分20
3分钟前
3分钟前
caca完成签到,获得积分0
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204640
捐赠科研通 3257493
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613