Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration

计算机科学 人工智能 一般化 任务(项目管理) 深度学习 机器学习 学习迁移 工程类 数学 系统工程 数学分析
作者
Weimin Tan,Chenxi Ma,Weimin Tan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3208267/v1
摘要

Abstract Fluorescence microscopy image restoration (FMIR) has received wide attention in the life science field and led to significant progress, benefiting from the deep learning (DL) technology. However, most of the current DL-based FMIR methods need to train a task-specific deep model from scratch on a specific dataset for each FMIR problem, such as super-resolution (SR), denoising, isotropic reconstruction, projection, volume reconstruction, etc. The performance and practicability of these FMIR models are limited due to the troublesome training, the difficulty in obtaining high-quality training images, and the limited generalization ability. Nowadays, the pre-trained foundation models have obtained significant breakthroughs in computer vision (CV) and natural language processing (NLP), demonstrating the powerful effect of the pre-training and fine-tuning paradigm. Here, inspired by the huge success of the pre-trained foundation models in the artificial intelligence (AI), we provide a universal solution for different FMIR problems by presenting a unified FMIR foundation model (UniFMIR), achieving higher image precision, better generalization performance, efficient and low-cost training of the task-specific model. The experimental results on five FMIR tasks and nine datasets, covering a wide range of fluorescence microscopy imaging modalities and biological samples, demonstrate the strong capability of the UniFMIR to handle various FMIR situations with a single model. The UniFMIR, pre-trained on the large-scale dataset we collected, can effectively transfer the knowledge learned during the pre-training to a specific FMIR situation by fine-tuning and can obtain a significant performance improvement, uncovering clear nanoscale cell structures and facilitating high-quality imaging in live samples. This work first explores the potential of applying the foundation model for FMIR. We hope to provide some inspiration for more researchers to further explore the DL-based FMIR and to trigger new research highlights of the FMIR model pre-training and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西子阳发布了新的文献求助10
1秒前
1秒前
下课了吧发布了新的文献求助10
1秒前
1秒前
朴实山兰完成签到,获得积分10
1秒前
1秒前
2秒前
啊嚯发布了新的文献求助10
2秒前
草上飞完成签到 ,获得积分10
2秒前
小罗飞飞飞完成签到 ,获得积分10
2秒前
2秒前
L龙完成签到,获得积分20
3秒前
雯雯完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
科研通AI5应助LZZ采纳,获得10
3秒前
情怀应助WxChen采纳,获得10
3秒前
Akim应助WxChen采纳,获得10
4秒前
深情安青应助WxChen采纳,获得10
4秒前
请叫我风吹麦浪应助WxChen采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
Dean完成签到 ,获得积分10
5秒前
乔乔发布了新的文献求助10
5秒前
小蘑菇应助ht2025采纳,获得10
5秒前
耍酷花卷发布了新的文献求助10
6秒前
微笑如冰发布了新的文献求助10
6秒前
二二二发布了新的文献求助10
6秒前
一颗柚子完成签到,获得积分10
6秒前
abc完成签到 ,获得积分10
6秒前
PMX发布了新的文献求助10
7秒前
标致小伙发布了新的文献求助10
7秒前
joysa完成签到,获得积分10
7秒前
131343完成签到,获得积分10
7秒前
FashionBoy应助慕子采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762