已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning–Enabled Diagnosis of Liver Adenocarcinoma

接收机工作特性 活检 医学 放射科 转移 数字化病理学 腺癌 普通外科 病理 内科学 癌症
作者
Thomas Albrecht,Annik Rossberg,Jana Albrecht,Jan P. Nicolay,Beate K. Straub,Tiemo Sven Gerber,Michael von Albrecht,Fritz Brinkmann,Alphonse Charbel,Constantin Schwab,Johannes Schreck,Alexander Brobeil,Christa Flechtenmacher,Moritz von Winterfeld,Bruno Köhler,Christoph Springfeld,Arianeb Mehrabi,Stephan Singer,Monika Vogel,Olaf Neumann,Albrecht Stenzinger,Peter Schirmacher,Cleo‐Aron Weis,Stephanie Roessler,Jakob Nikolas Kather,Benjamin Goeppert
出处
期刊:Gastroenterology [Elsevier]
卷期号:165 (5): 1262-1275 被引量:8
标识
DOI:10.1053/j.gastro.2023.07.026
摘要

Diagnosis of adenocarcinoma in the liver is a frequent scenario in routine pathology and has a critical impact on clinical decision making. However, rendering a correct diagnosis can be challenging, and often requires the integration of clinical, radiologic, and immunohistochemical information. We present a deep learning model (HEPNET) to distinguish intrahepatic cholangiocarcinoma from colorectal liver metastasis, as the most frequent primary and secondary forms of liver adenocarcinoma, with clinical grade accuracy using H&E-stained whole-slide images.HEPNET was trained on 714,589 image tiles from 456 patients who were randomly selected in a stratified manner from a pool of 571 patients who underwent surgical resection or biopsy at Heidelberg University Hospital. Model performance was evaluated on a hold-out internal test set comprising 115 patients and externally validated on 159 patients recruited at Mainz University Hospital.On the hold-out internal test set, HEPNET achieved an area under the receiver operating characteristic curve of 0.994 (95% CI, 0.989-1.000) and an accuracy of 96.522% (95% CI, 94.521%-98.694%) at the patient level. Validation on the external test set yielded an area under the receiver operating characteristic curve of 0.997 (95% CI, 0.995-1.000), corresponding to an accuracy of 98.113% (95% CI, 96.907%-100.000%). HEPNET surpassed the performance of 6 pathology experts with different levels of experience in a reader study of 50 patients (P = .0005), boosted the performance of resident pathologists to the level of senior pathologists, and reduced potential downstream analyses.We provided a ready-to-use tool with clinical grade performance that may facilitate routine pathology by rendering a definitive diagnosis and guiding ancillary testing. The incorporation of HEPNET into pathology laboratories may optimize the diagnostic workflow, complemented by test-related labor and cost savings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的以筠完成签到 ,获得积分10
刚刚
1秒前
李东东完成签到 ,获得积分10
1秒前
大意的青槐关注了科研通微信公众号
2秒前
秀丽青枫完成签到 ,获得积分10
3秒前
3秒前
3秒前
风止完成签到 ,获得积分10
4秒前
5秒前
5秒前
runtang完成签到,获得积分10
5秒前
6秒前
Aniya_Shine完成签到 ,获得积分10
6秒前
woshiwuziq完成签到 ,获得积分10
7秒前
迷路冰安完成签到 ,获得积分10
7秒前
胡萝卜发布了新的文献求助10
8秒前
ko1完成签到 ,获得积分10
8秒前
Cathy_Chen完成签到,获得积分10
9秒前
lingshan完成签到 ,获得积分10
9秒前
Rjy完成签到 ,获得积分10
10秒前
西瓜刀完成签到 ,获得积分10
11秒前
11秒前
12秒前
科研通AI2S应助每文采纳,获得20
12秒前
13秒前
莫遥完成签到 ,获得积分10
13秒前
怡然发卡发布了新的文献求助10
14秒前
Chasing完成签到 ,获得积分10
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
如约而至完成签到 ,获得积分10
16秒前
mrjohn完成签到,获得积分10
16秒前
大小罐子完成签到,获得积分10
17秒前
yzthk完成签到 ,获得积分10
17秒前
gmchen完成签到,获得积分10
18秒前
搜集达人应助哈哈酱采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056378
求助须知:如何正确求助?哪些是违规求助? 2712952
关于积分的说明 7433961
捐赠科研通 2357944
什么是DOI,文献DOI怎么找? 1249173
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195

今日热心研友

搜集达人
2 10
田様
2
mmyhn
1
所所
1
Jasper
10
结实大白
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10