Quantum machine learning for natural language processing application

量子机器学习 计算机科学 量子计算机 量子算法 加速 人工智能 量子排序 理论计算机科学 量子 量子网络 并行计算 物理 量子力学
作者
Shyambabu Pandey,Nihar Jyoti Basisth,Tushar Sachan,Neha Kumari,Partha Pakray
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:627: 129123-129123 被引量:2
标识
DOI:10.1016/j.physa.2023.129123
摘要

Quantum computing is a speedily emerging area that applies quantum mechanics properties to solve complex problems that are difficult for classical computing. Machine learning is a sub-field of artificial intelligence which makes computers learn patterns from experiences. Due to the exponential growth of data, machine learning algorithms may be insufficient for big data, whereas on other side quantum computing can do fast computing. A combination of quantum computing and machine learning gave rise to a new field known as quantum machine learning. Quantum machine learning algorithms take advantage of the fast processing of quantum computing and show speedup compared to their classical counterpart. Natural language processing is another area of artificial intelligence that enables the computer to understand human languages. Now, researchers are trying to take advantage of quantum machine learning speedup in natural language processing applications. In this paper, first, we discuss the path from quantum computing to quantum machine learning. Then we review the state of the art of quantum machine learning for natural language processing applications. We also provide classical and quantum-based long short-term memory for parts of speech tagging on social media code mixed language. Our experiment shows that quantum-based long short-term memory performance is better than classical long short-term memory for parts of speech tagging of code-mixed datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
善良海云发布了新的文献求助10
4秒前
大胆的弼完成签到,获得积分10
7秒前
8秒前
陈平安发布了新的文献求助10
9秒前
文武贝发布了新的文献求助10
9秒前
CipherSage应助你想读博吗采纳,获得10
12秒前
13秒前
夏梦园完成签到,获得积分20
14秒前
阳光彩虹小白马完成签到 ,获得积分10
14秒前
cassie发布了新的文献求助10
15秒前
Lucas应助mf采纳,获得10
16秒前
MD99发布了新的文献求助10
18秒前
wangyuchen发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
杨馨蕊完成签到 ,获得积分10
23秒前
sb完成签到,获得积分10
23秒前
24秒前
王sir完成签到,获得积分10
24秒前
Khaos_0929发布了新的文献求助10
26秒前
陈平安完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
nanyuan123发布了新的文献求助30
30秒前
半糖完成签到,获得积分10
30秒前
SYLH应助ShihanZhong采纳,获得10
30秒前
111完成签到,获得积分10
31秒前
33秒前
lrl发布了新的文献求助10
33秒前
夏梦园发布了新的文献求助10
33秒前
了0完成签到 ,获得积分10
35秒前
锥子完成签到,获得积分10
36秒前
脑洞疼应助清新的苑博采纳,获得10
36秒前
Khaos_0929完成签到,获得积分10
37秒前
37秒前
端庄千青完成签到,获得积分10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997