Quantum machine learning for natural language processing application

量子机器学习 计算机科学 量子计算机 量子算法 加速 人工智能 量子排序 理论计算机科学 量子 量子网络 并行计算 物理 量子力学
作者
Shyambabu Pandey,Nihar Jyoti Basisth,Tushar Sachan,Neha Kumari,Partha Pakray
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:627: 129123-129123 被引量:2
标识
DOI:10.1016/j.physa.2023.129123
摘要

Quantum computing is a speedily emerging area that applies quantum mechanics properties to solve complex problems that are difficult for classical computing. Machine learning is a sub-field of artificial intelligence which makes computers learn patterns from experiences. Due to the exponential growth of data, machine learning algorithms may be insufficient for big data, whereas on other side quantum computing can do fast computing. A combination of quantum computing and machine learning gave rise to a new field known as quantum machine learning. Quantum machine learning algorithms take advantage of the fast processing of quantum computing and show speedup compared to their classical counterpart. Natural language processing is another area of artificial intelligence that enables the computer to understand human languages. Now, researchers are trying to take advantage of quantum machine learning speedup in natural language processing applications. In this paper, first, we discuss the path from quantum computing to quantum machine learning. Then we review the state of the art of quantum machine learning for natural language processing applications. We also provide classical and quantum-based long short-term memory for parts of speech tagging on social media code mixed language. Our experiment shows that quantum-based long short-term memory performance is better than classical long short-term memory for parts of speech tagging of code-mixed datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速苡完成签到,获得积分10
1秒前
1秒前
3秒前
思源应助xia采纳,获得10
3秒前
龙大王完成签到 ,获得积分10
5秒前
5秒前
科研通AI6应助不止夏天采纳,获得30
6秒前
6秒前
6秒前
柔弱白羊发布了新的文献求助10
8秒前
传奇3应助Lengbo采纳,获得10
8秒前
温暖的定格完成签到,获得积分10
9秒前
monkey发布了新的文献求助10
9秒前
华国锋应助老实凝蕊采纳,获得20
9秒前
子阅发布了新的文献求助10
10秒前
10秒前
MM完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
wwwjy完成签到 ,获得积分10
11秒前
延陵君应助galvin采纳,获得30
12秒前
realrrr完成签到 ,获得积分10
12秒前
12秒前
Ava应助啦啦啦啦德玛西亚采纳,获得10
13秒前
霸气映之完成签到,获得积分10
13秒前
yurh完成签到,获得积分10
13秒前
完美世界应助monkey采纳,获得10
14秒前
科研通AI6应助tt825采纳,获得10
14秒前
15秒前
叶子发布了新的文献求助20
16秒前
大木头发布了新的文献求助10
17秒前
xiaoya发布了新的文献求助10
17秒前
lxy完成签到,获得积分10
18秒前
18秒前
19秒前
Hello应助shipcap采纳,获得10
19秒前
Ava应助wuxunxun2015采纳,获得10
20秒前
20秒前
倩倩发布了新的文献求助10
21秒前
lcc发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812