污染物
纳米复合材料
光催化
水溶液
降级(电信)
材料科学
催化作用
多孔性
化学工程
制浆造纸工业
化学
纳米技术
复合材料
计算机科学
有机化学
电信
工程类
作者
Elham Derakhshani,Ali Naghizadeh
标识
DOI:10.2166/aqua.2023.316
摘要
Abstract Nanocomposites with diameters of 1 to 100 nm have modified properties such as uniform size distribution, small size, high surface-to-volume ratio, high absorbability, porosity, and various potential roles, including in catalytic and biological activities. The purpose of this research study was to systematically review all research studies on the photocatalytic decomposition of pollutants by NiFe2O4-based nanocomposites and evaluate the optimal laboratory conditions and the results of these studies. The present systematic review was conducted by searching Scopus, PubMed and Web of Science databases until March 2022. The parameters of nano catalyst type and size, synthesis methods, pollutant type, optimal pH, optimal initial pollutant concentration, optimal catalyst concentration, optimal time, radiation and removal efficiency were investigated. 454 studies were screened and using the inclusion and exclusion criteria, in total, 31 studies met our inclusion criteria and provided the information necessary to photocatalytic degradation of pollutants by NiFe2O4-based nanocomposites. In the investigated studies, the percentage of photocatalytic degradation of pollutants by NiFe2O4-based nanocomposites was reported to be above 70%, and in some studies, the removal efficiency had reached 100%. From the results of this systematic review, it was concluded that the photocatalytic process using NiFe2O4-based nanocomposites has a high effect on the degradation of aqueous solution pollutants.
科研通智能强力驱动
Strongly Powered by AbleSci AI