Development and validation of a machine learning model of radiation-induced hypothyroidism with clinical and dose–volume features

布里氏评分 机器学习 队列 医学 人工智能 放射治疗 计算机科学 外科 内科学
作者
Mu‐Hung Tsai,Joseph Tung‐Chieh Chang,Hsi-Huei Lu,Yuan-Hua Wu,Tzu-Hui Pao,Yung‐Jen Cheng,Wen-Yen Zheng,Chen-Yu Chou,Jing-Han Lin,Tsung Yu,Jung-Hsien Chiang
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:189: 109911-109911
标识
DOI:10.1016/j.radonc.2023.109911
摘要

Radiation-induced hypothyroidism (RIHT) is a common but underestimated late effect in head and neck cancers. However, no consensus exists regarding risk prediction or dose constraints in RIHT. We aimed to develop a machine learning model for the accurate risk prediction of RIHT based on clinical and dose-volume features and to evaluate its performance internally and externally.We retrospectively searched two institutions for patients aged >20 years treated with definitive radiotherapy for nasopharyngeal or oropharyngeal cancer, and extracted their clinical information and dose-volume features. One was designated the developmental cohort, the other as the external validation cohort. We compared the performances of machine learning models with those of published normal tissue complication probability (NTCP) models.The developmental and external validation cohorts consisted of 378 and 49 patients, respectively. The estimated cumulative incidence rates of grade ≥1 hypothyroidism were 53.5% and 61.3% in the developmental and external validation cohorts, respectively. Machine learning models outperformed traditional NTCP models by having lower Brier scores at every time point and a lower integrated Brier score, while demonstrating a comparable calibration index and mean area under the curve. Even simplified machine learning models using only thyroid features performed better than did traditional NTCP algorithms. The machine learning models showed consistent performance between folds. The performance in a previously unseen external validation cohort was comparable to that of the cross-validation.Our model outperformed traditional NTCP models, with additional capabilities of predicting the RIHT risk at individual time points. A simplified model using only thyroid dose-volume features still outperforms traditional NTCP models and can be incorporated into future treatment planning systems for biological optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
迷路以蓝完成签到,获得积分10
2秒前
kai发布了新的文献求助10
2秒前
2秒前
3秒前
苹果摇伽完成签到,获得积分10
3秒前
宓希完成签到,获得积分10
3秒前
CipherSage应助淡定自中采纳,获得10
4秒前
一只香菇发布了新的文献求助10
4秒前
李健的粉丝团团长应助tuya采纳,获得10
5秒前
刘欣宇发布了新的文献求助10
5秒前
5秒前
6秒前
张琳琳完成签到,获得积分10
6秒前
6秒前
6秒前
豌豆射手发布了新的文献求助20
7秒前
沉静晓啸发布了新的文献求助10
7秒前
zyy211完成签到,获得积分20
7秒前
大模型应助雅哈采纳,获得10
8秒前
看看发布了新的文献求助20
9秒前
9秒前
wpt完成签到,获得积分20
9秒前
白开水完成签到,获得积分10
9秒前
忐忑的蓝完成签到,获得积分10
10秒前
ZJX完成签到,获得积分10
10秒前
10秒前
11秒前
123完成签到,获得积分10
11秒前
小冬猫发布了新的文献求助10
11秒前
huiwanfeifei发布了新的文献求助10
11秒前
千跃完成签到,获得积分10
11秒前
五花膘完成签到 ,获得积分10
11秒前
JamesPei应助阿毛ya采纳,获得10
12秒前
羊羊羊发布了新的文献求助20
12秒前
小蘑菇应助天博采纳,获得10
12秒前
李青秀发布了新的文献求助20
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110