Development and validation of a machine learning model of radiation-induced hypothyroidism with clinical and dose–volume features

布里氏评分 机器学习 队列 医学 人工智能 放射治疗 计算机科学 外科 内科学
作者
Mu‐Hung Tsai,Joseph Tung‐Chieh Chang,Hsi-Huei Lu,Yuan-Hua Wu,Tzu-Hui Pao,Yung‐Jen Cheng,Wen-Yen Zheng,Chen-Yu Chou,Jing-Han Lin,Tsung Yu,Jung-Hsien Chiang
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:189: 109911-109911
标识
DOI:10.1016/j.radonc.2023.109911
摘要

Radiation-induced hypothyroidism (RIHT) is a common but underestimated late effect in head and neck cancers. However, no consensus exists regarding risk prediction or dose constraints in RIHT. We aimed to develop a machine learning model for the accurate risk prediction of RIHT based on clinical and dose-volume features and to evaluate its performance internally and externally.We retrospectively searched two institutions for patients aged >20 years treated with definitive radiotherapy for nasopharyngeal or oropharyngeal cancer, and extracted their clinical information and dose-volume features. One was designated the developmental cohort, the other as the external validation cohort. We compared the performances of machine learning models with those of published normal tissue complication probability (NTCP) models.The developmental and external validation cohorts consisted of 378 and 49 patients, respectively. The estimated cumulative incidence rates of grade ≥1 hypothyroidism were 53.5% and 61.3% in the developmental and external validation cohorts, respectively. Machine learning models outperformed traditional NTCP models by having lower Brier scores at every time point and a lower integrated Brier score, while demonstrating a comparable calibration index and mean area under the curve. Even simplified machine learning models using only thyroid features performed better than did traditional NTCP algorithms. The machine learning models showed consistent performance between folds. The performance in a previously unseen external validation cohort was comparable to that of the cross-validation.Our model outperformed traditional NTCP models, with additional capabilities of predicting the RIHT risk at individual time points. A simplified model using only thyroid dose-volume features still outperforms traditional NTCP models and can be incorporated into future treatment planning systems for biological optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
zqqq发布了新的文献求助10
1秒前
嗯吶完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
独特斩完成签到,获得积分10
2秒前
云霖柒发布了新的文献求助10
2秒前
LOVEMEVOL发布了新的文献求助10
3秒前
3秒前
大眼的平松完成签到,获得积分10
4秒前
杞人忧天发布了新的文献求助10
5秒前
5秒前
汉堡包应助Shandongdaxiu采纳,获得10
5秒前
阿红发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
碧蓝迎南完成签到,获得积分10
6秒前
飞快的语山完成签到,获得积分10
6秒前
6秒前
6秒前
姜饼饼发布了新的文献求助10
7秒前
123完成签到 ,获得积分10
7秒前
柚子子子子子子完成签到,获得积分10
7秒前
9秒前
小彤发布了新的文献求助10
9秒前
9秒前
9秒前
sherri完成签到 ,获得积分10
9秒前
Fort完成签到,获得积分10
9秒前
单薄铅笔发布了新的文献求助30
9秒前
蚂蚁Y嘿发布了新的文献求助10
10秒前
12秒前
daliu完成签到,获得积分10
12秒前
小冯完成签到,获得积分10
12秒前
abc小淘气完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771