Using a dual-stream attention neural network to characterize mild cognitive impairment based on retinal images

计算机科学 人工智能 痴呆 认知 模式识别(心理学) 卷积神经网络 医学 心理学 神经科学 疾病 病理
作者
He-Bei Gao,Shuai-Ye Zhao,Zheng Gu,Xinmin Wang,Ruizhe Jackevan Zhao,Zhigeng Pan,Hong Li,Fan Lü,Meixiao Shen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107411-107411 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107411
摘要

Mild cognitive impairment (MCI) is a critical transitional stage between normal cognition and dementia, for which early detection is crucial for timely intervention. Retinal imaging has been shown as a promising potential biomarker for MCI. This study aimed to develop a dual-stream attention neural network to classify individuals with MCI based on multi-modal retinal images. Our approach incorporated a cross-modality fusion technique, a variable scale dense residual model, and a multi-classifier mechanism within the dual-stream network. The model utilized a residual module to extract image features and employed a multi-level feature aggregation method to capture complex context information. Self-attention and cross-attention modules were utilized at each convolutional layer to fuse features from optical coherence tomography (OCT) and fundus modalities, resulting in multiple output losses. The neural network was applied to classify individuals with MCI, Alzheimer's disease, and control participants with normal cognition. Through fine-tuning the pre-trained model, we classified community-dwelling participants into two groups based on cognitive impairment test scores. To identify retinal imaging biomarkers associated with accurate prediction, we used the Gradient-weighted Class Activation Mapping technique. The proposed method achieved high precision rates of 84.96% and 80.90% in classifying MCI and positive test scores for cognitive impairment, respectively. Notably, changes in the optic nerve head on fundus photographs or OCT images among patients with MCI were not used to discriminate patients from the control group. These findings demonstrate the potential of our approach in identifying individuals with MCI and emphasize the significance of retinal imaging for early detection of cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxpxp完成签到,获得积分10
刚刚
1秒前
1秒前
yy爱科研完成签到,获得积分10
2秒前
六初完成签到 ,获得积分10
3秒前
胖胖橘完成签到 ,获得积分10
4秒前
红李子发布了新的文献求助30
4秒前
领导范儿应助快去学习吧采纳,获得10
4秒前
清风发布了新的文献求助10
6秒前
haipronl完成签到,获得积分10
6秒前
灰鸽舞完成签到 ,获得积分10
7秒前
小石榴的爸爸完成签到 ,获得积分10
7秒前
一帆锋顺完成签到,获得积分10
8秒前
T_MC郭完成签到,获得积分10
9秒前
滴滴答答完成签到 ,获得积分10
9秒前
啵啵只因完成签到,获得积分10
10秒前
郭帅完成签到,获得积分10
10秒前
13秒前
青青完成签到,获得积分10
14秒前
犹豫的凡白完成签到 ,获得积分10
14秒前
共享精神应助求助采纳,获得10
14秒前
小石榴爸爸完成签到 ,获得积分10
15秒前
guajiguaji完成签到,获得积分10
16秒前
清风完成签到,获得积分10
17秒前
蔗蔗月月发布了新的文献求助10
18秒前
小木子完成签到,获得积分10
19秒前
跳跃幻儿完成签到,获得积分10
19秒前
冰销雪释完成签到,获得积分10
20秒前
斗图不怕输完成签到,获得积分10
22秒前
CD56应助科研通管家采纳,获得20
23秒前
雨相所至应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
雨相所至应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
23秒前
大吴克发布了新的文献求助10
24秒前
ertredffg完成签到,获得积分10
24秒前
柔弱念薇完成签到,获得积分10
25秒前
小杨完成签到 ,获得积分10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261743
求助须知:如何正确求助?哪些是违规求助? 2902575
关于积分的说明 8320003
捐赠科研通 2572346
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632308