Progress and Challenges of Integrated Machine Learning and Traditional Numerical Algorithms: Taking Reservoir Numerical Simulation as an Example

偏微分方程 离散化 计算机科学 数值偏微分方程 储层模拟 趋同(经济学) 数值分析 人工智能 算法 过程(计算) 计算机模拟 偏导数 机器学习 数学 模拟 工程类 数学分析 石油工程 经济 经济增长 操作系统
作者
Xu Chen,Kai Zhang,Zhenning Ji,Xiaoli Shen,Piyang Liu,Liming Zhang,Jian Wang,Jun Yao
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (21): 4418-4418 被引量:4
标识
DOI:10.3390/math11214418
摘要

Machine learning techniques have garnered significant attention in various engineering disciplines due to their potential and benefits. Specifically, in reservoir numerical simulations, the core process revolves around solving the partial differential equations delineating oil, gas, and water flow dynamics in porous media. Discretizing these partial differential equations via numerical methods is one cornerstone of this simulation process. The synergy between traditional numerical methods and machine learning can enhance the precision of partial differential equation discretization. Moreover, machine learning algorithms can be employed to solve partial differential equations directly, yielding rapid convergence, heightened computational efficiency, and accuracies surpassing 95%. This manuscript offers an overview of the predominant numerical methods in reservoir simulations, focusing on integrating machine learning methodologies. The innovations in fusing deep learning techniques to solve reservoir partial differential equations are illuminated, coupled with a concise discussion of their inherent advantages and constraints. As machine learning continues to evolve, its conjunction with numerical methods is poised to be pivotal in addressing complex reservoir engineering challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助xioabu采纳,获得10
2秒前
6秒前
Asteria完成签到,获得积分10
8秒前
Cala洛~完成签到 ,获得积分10
8秒前
畅快的枫完成签到,获得积分10
9秒前
9秒前
QQ完成签到,获得积分10
10秒前
三石完成签到 ,获得积分10
10秒前
12秒前
Eunice完成签到,获得积分10
13秒前
wualexandra完成签到,获得积分10
13秒前
徐哈哈发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
Hawaii完成签到,获得积分10
16秒前
彩色的冥茗完成签到,获得积分10
18秒前
丰富的宛亦完成签到,获得积分10
18秒前
钟于发布了新的文献求助10
20秒前
科研通AI5应助可爱的梦松采纳,获得10
20秒前
cij123完成签到,获得积分10
21秒前
机灵烤鸡发布了新的文献求助10
21秒前
23秒前
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得30
24秒前
24秒前
24秒前
柯一一应助科研通管家采纳,获得10
24秒前
24秒前
柯一一应助科研通管家采纳,获得10
24秒前
24秒前
无花果应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432