Boxlike Assemblages of Few-Layer MoS2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO2 to Methanol

硫黄 甲醇 催化作用 图层(电子) 微晶 材料科学 甲烷 化学工程 纳米技术 无机化学 化学 有机化学 工程类 冶金
作者
Shuli Zhou,Hua Chun Zeng
出处
期刊:ACS Catalysis 卷期号:12 (16): 9872-9886 被引量:11
标识
DOI:10.1021/acscatal.2c02838
摘要

Direct hydrogenation of CO2 into methanol is a promising strategy for reducing excessive dependence on fossil fuels and alleviating environmental concerns. Recently, in-plane sulfur vacancies in two-dimensional MoS2 nanosheets were unveiled as efficient catalytic active sites for methanol synthesis from CO2, whereas edge vacancies facilitated hydrogenation of CO2 to methane. Herein, we developed boxlike assemblages of quasi-single-layer MoS2 nanosheets, which were edge-blocked by ZnS crystallites (denoted as h-MoS2/ZnS) via a metal–organic framework (MOF)-engaged solvothermal route and subsequent heat treatments. The spatial confinement of the ZnS can restrain the growth and aggregation of MoS2 and ensure the stability of few-layer or even single-layer MoS2 in the assemblages. More importantly, the presence of ZnS can prevent reactants from approaching the edge sulfur vacancies of MoS2. With more exposed in-plane sulfur vacancies and less edge sulfur vacancies, the h-MoS2/ZnS exhibits 67.3% methanol selectively, 9.0% CO2 conversion, and a high methanol space-time yield of up to 0.93 gMeOH·gMoS2–1·h–1 at 260 °C, 5 MPa, and 15 000 mL·gcat.–1·h–1. The catalytic activity was stable for at least 120 h. By removing the ZnS phase from h-MoS2/ZnS and thus deliberately creating more edge sulfur vacancies, it was further confirmed that edge sulfur vacancies are active catalytic sites for excessive hydrogenation of CO2 to methane. Furthermore, the reaction mechanism of our catalyst was also investigated by a high-pressure in situ DRIFTS study. Thus, this MOF-templated strategy for assembling and confining quasi-single-layer MoS2 provides insights into the development of highly efficient transition-metal dichalcogenide catalysts for CO2 hydrogenation with excellent stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chuan完成签到,获得积分10
刚刚
1秒前
1秒前
蛋挞完成签到 ,获得积分10
2秒前
毛男完成签到,获得积分10
2秒前
Ppp完成签到,获得积分10
2秒前
3秒前
Jenny发布了新的文献求助10
3秒前
柯柯完成签到 ,获得积分10
4秒前
糖不甜了完成签到 ,获得积分10
5秒前
asd发布了新的文献求助30
5秒前
酷波er应助DJ采纳,获得10
6秒前
6秒前
6秒前
嘻嘻发布了新的文献求助10
7秒前
7秒前
俊逸的雪冥完成签到,获得积分10
7秒前
传奇3应助tph采纳,获得10
8秒前
休思完成签到,获得积分10
8秒前
彳亍1117应助vikoel采纳,获得10
8秒前
9秒前
goblue完成签到,获得积分10
10秒前
10秒前
Owen应助小沈采纳,获得10
10秒前
241222013完成签到,获得积分10
10秒前
谨慎忆安发布了新的文献求助10
10秒前
haveatry发布了新的文献求助10
10秒前
四月一关注了科研通微信公众号
11秒前
wwb完成签到,获得积分10
12秒前
震动的雪一完成签到,获得积分10
12秒前
12秒前
弱水完成签到,获得积分10
13秒前
13秒前
orixero应助livresse采纳,获得10
13秒前
hanlinhong发布了新的文献求助30
13秒前
汪了个汪完成签到,获得积分20
13秒前
13秒前
ShowMaker应助Apricity采纳,获得30
15秒前
俊逸的雪冥关注了科研通微信公众号
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145419
求助须知:如何正确求助?哪些是违规求助? 2796867
关于积分的说明 7821676
捐赠科研通 2453124
什么是DOI,文献DOI怎么找? 1305464
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464