Boxlike Assemblages of Few-Layer MoS2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO2 to Methanol

硫黄 甲醇 催化作用 图层(电子) 微晶 材料科学 甲烷 化学工程 甲烷化 纳米技术 无机化学 化学 有机化学 工程类 冶金
作者
Shenghui Zhou,Hua Chun Zeng
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (16): 9872-9886 被引量:42
标识
DOI:10.1021/acscatal.2c02838
摘要

Direct hydrogenation of CO2 into methanol is a promising strategy for reducing excessive dependence on fossil fuels and alleviating environmental concerns. Recently, in-plane sulfur vacancies in two-dimensional MoS2 nanosheets were unveiled as efficient catalytic active sites for methanol synthesis from CO2, whereas edge vacancies facilitated hydrogenation of CO2 to methane. Herein, we developed boxlike assemblages of quasi-single-layer MoS2 nanosheets, which were edge-blocked by ZnS crystallites (denoted as h-MoS2/ZnS) via a metal–organic framework (MOF)-engaged solvothermal route and subsequent heat treatments. The spatial confinement of the ZnS can restrain the growth and aggregation of MoS2 and ensure the stability of few-layer or even single-layer MoS2 in the assemblages. More importantly, the presence of ZnS can prevent reactants from approaching the edge sulfur vacancies of MoS2. With more exposed in-plane sulfur vacancies and less edge sulfur vacancies, the h-MoS2/ZnS exhibits 67.3% methanol selectively, 9.0% CO2 conversion, and a high methanol space-time yield of up to 0.93 gMeOH·gMoS2–1·h–1 at 260 °C, 5 MPa, and 15 000 mL·gcat.–1·h–1. The catalytic activity was stable for at least 120 h. By removing the ZnS phase from h-MoS2/ZnS and thus deliberately creating more edge sulfur vacancies, it was further confirmed that edge sulfur vacancies are active catalytic sites for excessive hydrogenation of CO2 to methane. Furthermore, the reaction mechanism of our catalyst was also investigated by a high-pressure in situ DRIFTS study. Thus, this MOF-templated strategy for assembling and confining quasi-single-layer MoS2 provides insights into the development of highly efficient transition-metal dichalcogenide catalysts for CO2 hydrogenation with excellent stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助认真的潇洒采纳,获得10
1秒前
风中问晴完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
嘻嘻哈哈应助liudun23采纳,获得10
6秒前
whysoserious发布了新的文献求助10
6秒前
谦逊的饼完成签到,获得积分10
6秒前
科目三应助大梦要努力采纳,获得10
8秒前
哦萨尔发布了新的文献求助10
8秒前
踏实半烟完成签到,获得积分10
8秒前
生动不平发布了新的文献求助10
9秒前
和老爹豆豆完成签到,获得积分20
10秒前
77完成签到 ,获得积分10
10秒前
粗犷的尔阳完成签到,获得积分10
12秒前
wenliu完成签到,获得积分10
12秒前
随便吧发布了新的文献求助10
14秒前
153266916完成签到 ,获得积分10
15秒前
15秒前
orixero应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
long应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
贪玩的访风完成签到 ,获得积分10
19秒前
19秒前
wanci应助每天吃土采纳,获得10
21秒前
21秒前
Mythvens完成签到,获得积分10
22秒前
薯片儿完成签到 ,获得积分10
23秒前
23秒前
ding应助难过的谷芹采纳,获得10
24秒前
小南瓜发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252465
求助须知:如何正确求助?哪些是违规求助? 4416187
关于积分的说明 13748934
捐赠科研通 4288199
什么是DOI,文献DOI怎么找? 2352788
邀请新用户注册赠送积分活动 1349608
关于科研通互助平台的介绍 1309131