Boxlike Assemblages of Few-Layer MoS2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO2 to Methanol

硫黄 甲醇 催化作用 图层(电子) 微晶 材料科学 甲烷 化学工程 甲烷化 纳米技术 无机化学 化学 有机化学 工程类 冶金
作者
Shenghui Zhou,Hua Chun Zeng
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (16): 9872-9886 被引量:32
标识
DOI:10.1021/acscatal.2c02838
摘要

Direct hydrogenation of CO2 into methanol is a promising strategy for reducing excessive dependence on fossil fuels and alleviating environmental concerns. Recently, in-plane sulfur vacancies in two-dimensional MoS2 nanosheets were unveiled as efficient catalytic active sites for methanol synthesis from CO2, whereas edge vacancies facilitated hydrogenation of CO2 to methane. Herein, we developed boxlike assemblages of quasi-single-layer MoS2 nanosheets, which were edge-blocked by ZnS crystallites (denoted as h-MoS2/ZnS) via a metal–organic framework (MOF)-engaged solvothermal route and subsequent heat treatments. The spatial confinement of the ZnS can restrain the growth and aggregation of MoS2 and ensure the stability of few-layer or even single-layer MoS2 in the assemblages. More importantly, the presence of ZnS can prevent reactants from approaching the edge sulfur vacancies of MoS2. With more exposed in-plane sulfur vacancies and less edge sulfur vacancies, the h-MoS2/ZnS exhibits 67.3% methanol selectively, 9.0% CO2 conversion, and a high methanol space-time yield of up to 0.93 gMeOH·gMoS2–1·h–1 at 260 °C, 5 MPa, and 15 000 mL·gcat.–1·h–1. The catalytic activity was stable for at least 120 h. By removing the ZnS phase from h-MoS2/ZnS and thus deliberately creating more edge sulfur vacancies, it was further confirmed that edge sulfur vacancies are active catalytic sites for excessive hydrogenation of CO2 to methane. Furthermore, the reaction mechanism of our catalyst was also investigated by a high-pressure in situ DRIFTS study. Thus, this MOF-templated strategy for assembling and confining quasi-single-layer MoS2 provides insights into the development of highly efficient transition-metal dichalcogenide catalysts for CO2 hydrogenation with excellent stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
温温完成签到,获得积分20
5秒前
unique444发布了新的文献求助10
5秒前
大牛发布了新的文献求助30
6秒前
Hoper完成签到,获得积分10
6秒前
小马甲应助小鱼儿采纳,获得10
9秒前
充电宝应助海德堡采纳,获得10
10秒前
xuanxuan1205发布了新的文献求助10
10秒前
万能图书馆应助unique444采纳,获得10
13秒前
16秒前
科研小白完成签到 ,获得积分10
16秒前
慕青应助温温采纳,获得30
16秒前
情怀应助madwup采纳,获得10
17秒前
Dr_Zhang完成签到 ,获得积分10
18秒前
qwe完成签到,获得积分10
19秒前
可爱的函函应助Jamesliu采纳,获得10
19秒前
gfbh发布了新的文献求助10
20秒前
20秒前
asdf应助11采纳,获得10
21秒前
缥缈的又亦完成签到,获得积分10
22秒前
24秒前
LL666完成签到 ,获得积分10
24秒前
24秒前
珍珠闹海完成签到,获得积分10
25秒前
26秒前
珍珠闹海发布了新的文献求助10
28秒前
29秒前
海德堡发布了新的文献求助10
30秒前
漾黎发布了新的文献求助10
30秒前
Kristin发布了新的文献求助10
30秒前
搜集达人应助LY采纳,获得10
32秒前
32秒前
JamesPei应助liuxinkxj采纳,获得10
33秒前
ChenJohnny应助科研通管家采纳,获得20
33秒前
思源应助科研通管家采纳,获得30
33秒前
Owen应助科研通管家采纳,获得10
33秒前
33秒前
在水一方应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
Singularity应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966082
求助须知:如何正确求助?哪些是违规求助? 3511457
关于积分的说明 11158333
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324