Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model

逻辑回归 阴道加德纳菌 解脲支原体 产科 医学 微生物群 威尔科克森符号秩检验 普雷沃菌属 怀孕 机器学习 妇科 生物 细菌性阴道病 生物信息学 内科学 支原体 计算机科学 曼惠特尼U检验 细菌 遗传学
作者
Sunwha Park,Jeongsup Moon,Nayeon Kang,Young Han Kim,Young‐Ah You,Eunjin Kwon,AbuZar Ansari,Young Min Hur,Taesung Park,Young Ju Kim
出处
期刊:Frontiers in Microbiology [Frontiers Media SA]
卷期号:13 被引量:15
标识
DOI:10.3389/fmicb.2022.912853
摘要

An association between the vaginal microbiome and preterm birth has been reported. However, in practice, it is difficult to predict premature birth using the microbiome because the vaginal microbial community varies highly among samples depending on the individual, and the prediction rate is very low. The purpose of this study was to select markers that improve predictive power through machine learning among various vaginal microbiota and develop a prediction algorithm with better predictive power that combines clinical information. As a multicenter case-control study with 150 Korean pregnant women with 54 preterm delivery group and 96 full-term delivery group, cervicovaginal fluid was collected from pregnant women during mid-pregnancy. Their demographic profiles (age, BMI, education level, and PTB history), white blood cell count, and cervical length were recorded, and the microbiome profiles of the cervicovaginal fluid were analyzed. The subjects were randomly divided into a training (n = 101) and a test set (n = 49) in a two-to-one ratio. When training ML models using selected markers, five-fold cross-validation was performed on the training set. A univariate analysis was performed to select markers using seven statistical tests, including the Wilcoxon rank-sum test. Using the selected markers, including Lactobacillus spp., Gardnerella vaginalis, Ureaplasma parvum, Atopobium vaginae, Prevotella timonensis, and Peptoniphilus grossensis, machine learning models (logistic regression, random forest, extreme gradient boosting, support vector machine, and GUIDE) were used to build prediction models. The test area under the curve of the logistic regression model was 0.72 when it was trained with the 17 selected markers. When analyzed by combining white blood cell count and cervical length with the seven vaginal microbiome markers, the random forest model showed the highest test area under the curve of 0.84. The GUIDE, the single tree model, provided a more reasonable biological interpretation, using the 10 selected markers (A. vaginae, G. vaginalis, Lactobacillus crispatus, Lactobacillus fornicalis, Lactobacillus gasseri, Lactobacillus iners, Lactobacillus jensenii, Peptoniphilus grossensis, P. timonensis, and U. parvum), and the covariates produced a tree with a test area under the curve of 0.77. It was confirmed that the association with preterm birth increased when P. timonensis and U. parvum increased (AUC = 0.77), which could also be explained by the fact that as the number of Peptoniphilus lacrimalis increased, the association with preterm birth was high (AUC = 0.77). Our study demonstrates that several candidate bacteria could be used as potential predictors for preterm birth, and that the predictive rate can be increased through a machine learning model employing a combination of cervical length and white blood cell count information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助mescal采纳,获得10
刚刚
田恬完成签到,获得积分10
1秒前
大白鹅发布了新的文献求助10
1秒前
3秒前
3秒前
7秒前
大胆芷云发布了新的文献求助10
8秒前
念念发布了新的文献求助10
13秒前
14秒前
爆米花应助yi采纳,获得10
17秒前
19秒前
xx发布了新的文献求助10
21秒前
21秒前
香蕉觅云应助鸿鹄采纳,获得10
23秒前
务实的静珊完成签到,获得积分10
25秒前
慕文颜雨发布了新的文献求助10
25秒前
852应助轨迹采纳,获得10
26秒前
风趣的白玉完成签到 ,获得积分10
26秒前
天天快乐应助xx采纳,获得10
27秒前
29秒前
zddddd发布了新的文献求助10
31秒前
领导范儿应助念念采纳,获得10
32秒前
毫米汞柱完成签到,获得积分10
33秒前
阿水发布了新的文献求助10
33秒前
34秒前
35秒前
LionontheMars完成签到,获得积分10
36秒前
chenlin完成签到,获得积分10
37秒前
37秒前
LionontheMars发布了新的文献求助10
38秒前
42秒前
房弼发布了新的文献求助10
43秒前
熊大完成签到,获得积分10
43秒前
liyuna0910完成签到,获得积分10
45秒前
LHTTT发布了新的文献求助10
45秒前
shidewu完成签到,获得积分10
46秒前
zjl完成签到,获得积分10
48秒前
西贝西贝123完成签到,获得积分10
50秒前
LHTTT完成签到,获得积分10
55秒前
同玉完成签到,获得积分10
56秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122926
求助须知:如何正确求助?哪些是违规求助? 2773264
关于积分的说明 7717277
捐赠科研通 2428810
什么是DOI,文献DOI怎么找? 1290047
科研通“疑难数据库(出版商)”最低求助积分说明 621693
版权声明 600203