Single Solid Precursor-Derived Three-Dimensional Nanowire Networks of CuZn-Silicate for CO2 Hydrogenation to Methanol

硅酸盐 甲醇 纳米线 催化作用 纳米颗粒 产量(工程) 选择性 材料科学 化学工程 多孔性 色散(光学) 相(物质) 金属 纳米技术 化学 有机化学 冶金 工程类 复合材料 物理 光学
作者
Yu Shao,Mohammadreza Kosari,Shibo Xi,Hua Chun Zeng
出处
期刊:ACS Catalysis 卷期号:12 (10): 5750-5765 被引量:23
标识
DOI:10.1021/acscatal.2c00726
摘要

Hydrogenation of CO2 to MeOH is one of the most promising technologies in mitigating the emissions of CO2 and tackling the challenge of climate change. In this work, we present a synthetic protocol for preparing a Cu–ZnO-based heterogeneous catalyst supported by siliceous nanowire networks from a single solid precursor with a tunable composition. The resulting Si–Cu–Zn catalysts were evaluated with the MeOH synthesis from the CO2 hydrogenation reaction operated at moderate conditions (30 barg and 200–280 °C). A specific MeOH yield of 402 mgMeOH·gCu–1·h–1 and a MeOH selectivity of 51% were obtained at 240 °C. Such a performance was attributed to several structural and compositional merits, granted through the attentively engineered synthetic procedures. Small Cu nanoparticle (NP) size was achieved and maintained by the high dispersion of Cu to the atomic level in the precatalyst and the incorporation of ZnO as a structural promoter. Moreover, the desirable Cu–ZnO synergistic effect can be further attained from the strong metal–support interaction (SMSI) between the Cu NPs and the partially reduced ZnO phase. Lastly, the robust siliceous nanowire networks provided decent spatial confinement to contain the growth of Cu NPs while offering high accessibility with the macroscopic porous morphology. The catalyst exhibited stable performance over a week’s long stability test while keeping its structural integrity intact. Overall, this study may offer an alternative design and synthesis strategy for the well-received Cu–ZnO system to approach its high performance in CO2 hydrogenation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双勾玉发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
起司嗯发布了新的文献求助30
2秒前
长虹完成签到,获得积分10
2秒前
3秒前
vision发布了新的文献求助10
4秒前
桑榆非晚完成签到,获得积分10
4秒前
hui完成签到,获得积分20
4秒前
baby的跑男完成签到,获得积分10
4秒前
Faith完成签到,获得积分10
5秒前
5秒前
Mercurius完成签到,获得积分10
6秒前
6秒前
6秒前
ganzhongxin完成签到,获得积分10
6秒前
12356完成签到,获得积分10
6秒前
7秒前
今后应助白华苍松采纳,获得10
7秒前
跳跃乘风发布了新的文献求助20
7秒前
不舍天真发布了新的文献求助20
8秒前
坚强的樱发布了新的文献求助10
8秒前
温暖以蓝发布了新的文献求助10
8秒前
8秒前
wanci应助幸福胡萝卜采纳,获得10
8秒前
8秒前
Ych发布了新的文献求助10
8秒前
gjy完成签到,获得积分10
9秒前
vision完成签到,获得积分10
9秒前
小小发布了新的文献求助10
9秒前
Katie完成签到,获得积分10
9秒前
LT发布了新的文献求助10
9秒前
10秒前
科研人完成签到,获得积分10
10秒前
FashionBoy应助彭彭采纳,获得10
10秒前
赤邪发布了新的文献求助10
11秒前
Owen应助lwei采纳,获得10
11秒前
shelly0621给shelly0621的求助进行了留言
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762