已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Near infrared spectroscopy quantification based on Bi-LSTM and transfer learning for new scenarios

学习迁移 可转让性 化学 计算机科学 极限学习机 人工智能 卷积神经网络 深度学习 肥料 光谱学 模式识别(心理学) 人工神经网络 偏最小二乘回归 近红外光谱 生物系统 机器学习 物理 光学 量子力学 生物 生态学 罗伊特
作者
Ailing Tan,Yunxin Wang,Yong Zhao,Bolin Wang,Xiaohang Li,Alan X. Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:283: 121759-121759 被引量:11
标识
DOI:10.1016/j.saa.2022.121759
摘要

This study proposed a deep transfer learning methodology based on an improved Bi-directional Long Short-Term Memory (Bi-LSTM) network for the first time to address the near infrared spectroscopy (NIR) model transfer issue between samples. We tested its effectiveness on two datasets of manure and polyglutamic acid (γ-PGA) solution, respectively. First, the optimal primary Bi-LSTM networks for cattle manure and the first batch of γ-PGA were developed by ablation experiments and both proved to outperform one-dimensional convolutional neural network (1D-CNN), Partial Least Square (PLS) and Extreme Learning Machine (ELM) models. Then, two types of transfer learning approaches were carried out to determine model transferability to non-homologous samples. For poultry manure and the second batch of γ-PGA, the obtained predicting results verified that the second approach of fine-tuning Bi-LSTM layers and re-training FC layers transcended the first approach of fixing Bi-LSTM layers and only re-training FC layers by reducing the RMSEPtarget of 23.4275% and 50.7343%, respectively. Finally, comparisons with fine-tuning 1D-CNN and other traditional model transfer methods further identified the superiority of the proposed methodology with exceeding accuracy and smaller variation, which decreased RMSEPtarget of poultry manure and the second batch of γ-PGA of 7.2832% and 48.1256%, 67.1117% and 80.6924% when compared to that acquired by fine-tuning 1D-CNN, Tradaboost-ELM and CCA-PLS which were the best of five traditional methods, respectively. The study demonstrates the potential of the Fine-tuning-Bi-LSTM enabled NIR technology to be used as a simple, cost effective and reliable detection tool for a wide range of applications under various new scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助义气的元绿采纳,获得10
刚刚
iehaoang完成签到 ,获得积分10
3秒前
4秒前
钟离完成签到,获得积分10
6秒前
7秒前
友好的hh完成签到,获得积分10
8秒前
内向士萧完成签到,获得积分10
9秒前
yueyue发布了新的文献求助10
9秒前
内向士萧发布了新的文献求助10
12秒前
fffgz完成签到 ,获得积分10
18秒前
daishuheng完成签到 ,获得积分10
18秒前
18秒前
19秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
豆子应助科研通管家采纳,获得20
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
西酞普绿完成签到 ,获得积分20
25秒前
26秒前
小张完成签到,获得积分10
27秒前
HEIKU完成签到,获得积分0
29秒前
科研通AI2S应助lyc45491314采纳,获得10
35秒前
36秒前
颖宝老公完成签到,获得积分10
36秒前
大大大娇搞科研完成签到 ,获得积分10
41秒前
顾矜应助鸭鸭要学习鸭采纳,获得10
42秒前
45秒前
领导范儿应助lyc45491314采纳,获得20
46秒前
56秒前
咸鱼卷完成签到 ,获得积分10
56秒前
59秒前
孤存完成签到 ,获得积分10
1分钟前
lyc45491314发布了新的文献求助10
1分钟前
橙大炮发布了新的文献求助10
1分钟前
ccc发布了新的文献求助10
1分钟前
橙大炮完成签到,获得积分10
1分钟前
涛哥来科研完成签到 ,获得积分10
1分钟前
1分钟前
核桃小丸子完成签到 ,获得积分10
1分钟前
hucheng完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3077651
求助须知:如何正确求助?哪些是违规求助? 2730474
关于积分的说明 7512888
捐赠科研通 2378679
什么是DOI,文献DOI怎么找? 1261382
科研通“疑难数据库(出版商)”最低求助积分说明 611496
版权声明 597248