Near infrared spectroscopy quantification based on Bi-LSTM and transfer learning for new scenarios

学习迁移 可转让性 化学 计算机科学 极限学习机 人工智能 卷积神经网络 深度学习 肥料 光谱学 模式识别(心理学) 人工神经网络 偏最小二乘回归 近红外光谱 生物系统 机器学习 物理 光学 量子力学 生物 生态学 罗伊特
作者
Ailing Tan,Yunxin Wang,Yong Zhao,Bolin Wang,Xiaohang Li,Alan X. Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:283: 121759-121759 被引量:11
标识
DOI:10.1016/j.saa.2022.121759
摘要

This study proposed a deep transfer learning methodology based on an improved Bi-directional Long Short-Term Memory (Bi-LSTM) network for the first time to address the near infrared spectroscopy (NIR) model transfer issue between samples. We tested its effectiveness on two datasets of manure and polyglutamic acid (γ-PGA) solution, respectively. First, the optimal primary Bi-LSTM networks for cattle manure and the first batch of γ-PGA were developed by ablation experiments and both proved to outperform one-dimensional convolutional neural network (1D-CNN), Partial Least Square (PLS) and Extreme Learning Machine (ELM) models. Then, two types of transfer learning approaches were carried out to determine model transferability to non-homologous samples. For poultry manure and the second batch of γ-PGA, the obtained predicting results verified that the second approach of fine-tuning Bi-LSTM layers and re-training FC layers transcended the first approach of fixing Bi-LSTM layers and only re-training FC layers by reducing the RMSEPtarget of 23.4275% and 50.7343%, respectively. Finally, comparisons with fine-tuning 1D-CNN and other traditional model transfer methods further identified the superiority of the proposed methodology with exceeding accuracy and smaller variation, which decreased RMSEPtarget of poultry manure and the second batch of γ-PGA of 7.2832% and 48.1256%, 67.1117% and 80.6924% when compared to that acquired by fine-tuning 1D-CNN, Tradaboost-ELM and CCA-PLS which were the best of five traditional methods, respectively. The study demonstrates the potential of the Fine-tuning-Bi-LSTM enabled NIR technology to be used as a simple, cost effective and reliable detection tool for a wide range of applications under various new scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗷呜嗷呜发布了新的文献求助10
1秒前
2秒前
秀丽烨霖应助BEIMU采纳,获得10
2秒前
秃驴发布了新的文献求助10
3秒前
4秒前
4秒前
兴文研究院完成签到 ,获得积分10
5秒前
可爱的函函应助大力的戎采纳,获得10
7秒前
arc完成签到 ,获得积分10
7秒前
酷炫的毛巾完成签到,获得积分20
8秒前
Heartar发布了新的文献求助10
8秒前
LexMz完成签到,获得积分10
11秒前
理想三寻完成签到,获得积分10
11秒前
邓豪完成签到 ,获得积分10
11秒前
12秒前
13秒前
秃驴完成签到,获得积分10
14秒前
赢赢赢赢完成签到 ,获得积分10
15秒前
16秒前
西葫芦莲子粥完成签到,获得积分10
18秒前
哈哈哈发布了新的文献求助10
18秒前
大豆终结者完成签到,获得积分10
19秒前
楼丶完成签到,获得积分10
19秒前
搜集达人应助JazzWon采纳,获得10
20秒前
22秒前
22秒前
23秒前
24秒前
领导范儿应助嘻哈采纳,获得10
25秒前
一二完成签到,获得积分10
26秒前
28秒前
28秒前
28秒前
29秒前
29秒前
刘jk完成签到,获得积分10
30秒前
32秒前
cannon8应助独特的高山采纳,获得20
32秒前
星辰大海应助独特的高山采纳,获得10
32秒前
duyanxiong发布了新的文献求助10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262783
求助须知:如何正确求助?哪些是违规求助? 2903379
关于积分的说明 8325111
捐赠科研通 2573424
什么是DOI,文献DOI怎么找? 1398275
科研通“疑难数据库(出版商)”最低求助积分说明 654051
邀请新用户注册赠送积分活动 632686