Near infrared spectroscopy quantification based on Bi-LSTM and transfer learning for new scenarios

学习迁移 可转让性 化学 计算机科学 极限学习机 人工智能 卷积神经网络 深度学习 肥料 光谱学 模式识别(心理学) 人工神经网络 偏最小二乘回归 近红外光谱 生物系统 机器学习 物理 光学 量子力学 生物 生态学 罗伊特
作者
Ailing Tan,Yunxin Wang,Yong Zhao,Bolin Wang,Xiaohang Li,Alan X. Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:283: 121759-121759 被引量:13
标识
DOI:10.1016/j.saa.2022.121759
摘要

This study proposed a deep transfer learning methodology based on an improved Bi-directional Long Short-Term Memory (Bi-LSTM) network for the first time to address the near infrared spectroscopy (NIR) model transfer issue between samples. We tested its effectiveness on two datasets of manure and polyglutamic acid (γ-PGA) solution, respectively. First, the optimal primary Bi-LSTM networks for cattle manure and the first batch of γ-PGA were developed by ablation experiments and both proved to outperform one-dimensional convolutional neural network (1D-CNN), Partial Least Square (PLS) and Extreme Learning Machine (ELM) models. Then, two types of transfer learning approaches were carried out to determine model transferability to non-homologous samples. For poultry manure and the second batch of γ-PGA, the obtained predicting results verified that the second approach of fine-tuning Bi-LSTM layers and re-training FC layers transcended the first approach of fixing Bi-LSTM layers and only re-training FC layers by reducing the RMSEPtarget of 23.4275% and 50.7343%, respectively. Finally, comparisons with fine-tuning 1D-CNN and other traditional model transfer methods further identified the superiority of the proposed methodology with exceeding accuracy and smaller variation, which decreased RMSEPtarget of poultry manure and the second batch of γ-PGA of 7.2832% and 48.1256%, 67.1117% and 80.6924% when compared to that acquired by fine-tuning 1D-CNN, Tradaboost-ELM and CCA-PLS which were the best of five traditional methods, respectively. The study demonstrates the potential of the Fine-tuning-Bi-LSTM enabled NIR technology to be used as a simple, cost effective and reliable detection tool for a wide range of applications under various new scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小知了完成签到,获得积分10
1秒前
2秒前
xzy998应助科研通管家采纳,获得10
2秒前
Akjan应助科研通管家采纳,获得10
2秒前
wmm20035完成签到,获得积分10
2秒前
如意竺完成签到,获得积分10
3秒前
snow完成签到,获得积分10
5秒前
CHSLN完成签到 ,获得积分10
6秒前
qin完成签到,获得积分10
8秒前
爱丽丝应助leo采纳,获得10
10秒前
清秀龙猫完成签到 ,获得积分10
11秒前
bingo完成签到,获得积分10
17秒前
youngyang完成签到 ,获得积分10
17秒前
Salt完成签到 ,获得积分10
19秒前
Nicole完成签到 ,获得积分10
19秒前
爱笑半雪完成签到,获得积分10
21秒前
1122完成签到 ,获得积分10
21秒前
震动的沉鱼完成签到 ,获得积分10
22秒前
濮阳盼曼完成签到,获得积分10
23秒前
刘清河完成签到 ,获得积分10
23秒前
我是125完成签到,获得积分10
24秒前
和谐曼凝完成签到 ,获得积分10
25秒前
凌晨五点的完成签到,获得积分10
26秒前
重要铃铛完成签到 ,获得积分10
28秒前
csg888888完成签到,获得积分10
28秒前
29秒前
deallyxyz完成签到,获得积分10
30秒前
科研通AI2S应助Robe采纳,获得10
31秒前
善学以致用应助洁净斑马采纳,获得10
33秒前
33秒前
Urusaiina完成签到,获得积分10
35秒前
杨杨杨完成签到,获得积分10
35秒前
wanghua完成签到,获得积分10
38秒前
燕子完成签到,获得积分10
38秒前
caoyulongchn完成签到,获得积分10
39秒前
39秒前
40秒前
41秒前
喜悦的依琴完成签到,获得积分10
41秒前
科奇给11111111111111的求助进行了留言
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015