Artificial intelligence for image analysis in total hip and total knee arthroplasty

医学 射线照相术 植入 关节置换术 全髋关节置换术 口腔正畸科 外科
作者
B Gurung,Perry Liu,Peter Harris,Amit Sagi,Richard Field,David H. Sochart,Keith Tucker,Vipin Asopa
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:104-B (8): 929-937 被引量:47
标识
DOI:10.1302/0301-620x.104b8.bjj-2022-0120.r2
摘要

Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are.The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O'Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy.Of the 455 studies identified, only 12 were suitable for inclusion. Nine reported implant identification and three described predicting risk of implant failure. Of the 12, three studies compared AI performance with orthopaedic surgeons. AI-based implant identification achieved AUC 0.992 to 1, and most algorithms reported an accuracy > 90%, using 550 to 320,000 training radiographs. AI prediction of dislocation risk post-THA, determined after five-year follow-up, was satisfactory (AUC 76.67; 8,500 training radiographs). Diagnosis of hip implant loosening was good (accuracy 88.3%; 420 training radiographs) and measurement of postoperative acetabular angles was comparable to humans (mean absolute difference 1.35° to 1.39°). However, 11 of the 12 studies had several methodological limitations introducing a high risk of bias. None of the studies were externally validated.These studies show that AI is promising. While it already has the ability to analyze images with significant precision, there is currently insufficient high-level evidence to support its widespread clinical use. Further research to design robust studies that follow standard reporting guidelines should be encouraged to develop AI models that could be easily translated into real-world conditions. Cite this article: Bone Joint J 2022;104-B(8):929-937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月圆夜发布了新的文献求助10
1秒前
1秒前
dgft完成签到,获得积分20
1秒前
书蠹诗魔完成签到,获得积分10
2秒前
脑洞疼应助JunHan采纳,获得10
3秒前
3秒前
慕青应助不二家的卡农采纳,获得10
4秒前
平淡雪枫完成签到 ,获得积分10
5秒前
6秒前
大摸特摸发布了新的文献求助30
6秒前
7秒前
8秒前
共享精神应助自由妙竹采纳,获得10
9秒前
ghfgjjf完成签到 ,获得积分10
11秒前
SUNINE发布了新的文献求助10
11秒前
繁荣的从露完成签到,获得积分10
12秒前
大模型应助zy采纳,获得10
12秒前
capx完成签到,获得积分10
13秒前
111哩发布了新的文献求助10
13秒前
13秒前
14秒前
JunHan发布了新的文献求助10
14秒前
Tail完成签到,获得积分10
16秒前
wwwwwl完成签到 ,获得积分10
17秒前
18秒前
Tail发布了新的文献求助20
19秒前
20秒前
20秒前
天地一沙鸥完成签到,获得积分10
21秒前
奇遇里完成签到 ,获得积分10
21秒前
1r发布了新的文献求助10
22秒前
22秒前
22秒前
英俊的铭应助花陵采纳,获得10
24秒前
25秒前
小王完成签到,获得积分10
25秒前
chenhuiyu完成签到,获得积分10
27秒前
Lucas应助羊羊青采纳,获得10
28秒前
29秒前
量子星尘发布了新的文献求助30
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071