Artificial intelligence for image analysis in total hip and total knee arthroplasty

医学 射线照相术 植入 关节置换术 全髋关节置换术 口腔正畸科 外科
作者
B Gurung,Perry Liu,Peter Harris,Amit Sagi,Richard E. Field,David H. Sochart,Keith Tucker,Vipin Asopa
出处
期刊:The bone & joint journal [British Editorial Society of Bone & Joint Surgery]
卷期号:104-B (8): 929-937 被引量:32
标识
DOI:10.1302/0301-620x.104b8.bjj-2022-0120.r2
摘要

Aims Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are. Methods The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy. Results Of the 455 studies identified, only 12 were suitable for inclusion. Nine reported implant identification and three described predicting risk of implant failure. Of the 12, three studies compared AI performance with orthopaedic surgeons. AI-based implant identification achieved AUC 0.992 to 1, and most algorithms reported an accuracy > 90%, using 550 to 320,000 training radiographs. AI prediction of dislocation risk post-THA, determined after five-year follow-up, was satisfactory (AUC 76.67; 8,500 training radiographs). Diagnosis of hip implant loosening was good (accuracy 88.3%; 420 training radiographs) and measurement of postoperative acetabular angles was comparable to humans (mean absolute difference 1.35° to 1.39°). However, 11 of the 12 studies had several methodological limitations introducing a high risk of bias. None of the studies were externally validated. Conclusion These studies show that AI is promising. While it already has the ability to analyze images with significant precision, there is currently insufficient high-level evidence to support its widespread clinical use. Further research to design robust studies that follow standard reporting guidelines should be encouraged to develop AI models that could be easily translated into real-world conditions. Cite this article: Bone Joint J 2022;104-B(8):929–937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到,获得积分10
1秒前
Du发布了新的文献求助10
1秒前
FooLeup立仔发布了新的文献求助10
1秒前
甜甜秋完成签到 ,获得积分10
1秒前
三岁给三岁的求助进行了留言
1秒前
zhang发布了新的文献求助10
2秒前
gui发布了新的文献求助10
2秒前
腦內小劇場完成签到,获得积分10
2秒前
3秒前
Akim应助文龙采纳,获得10
3秒前
mirror完成签到,获得积分10
3秒前
枯叶蝶完成签到 ,获得积分10
3秒前
剑酒发布了新的文献求助10
4秒前
积极烧鹅完成签到,获得积分10
4秒前
4秒前
端庄的火龙果完成签到,获得积分10
5秒前
大模型应助烩面大师采纳,获得10
5秒前
JasVe完成签到 ,获得积分10
5秒前
5秒前
Lendar完成签到 ,获得积分10
5秒前
5秒前
zy大章鱼完成签到,获得积分10
6秒前
medhulang完成签到,获得积分20
6秒前
打打应助lucifer0922采纳,获得10
6秒前
ding应助儒雅致远采纳,获得10
6秒前
爆米花应助sdasd采纳,获得10
6秒前
大大怪发布了新的文献求助10
7秒前
寂寞致幻完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
高高完成签到 ,获得积分10
9秒前
JoshuaChen发布了新的文献求助10
9秒前
ww完成签到,获得积分10
9秒前
CodeCraft应助宋晓静采纳,获得10
9秒前
就瞅你发布了新的文献求助10
10秒前
orixero应助uilyang采纳,获得30
10秒前
xidongdong关注了科研通微信公众号
10秒前
kang完成签到,获得积分10
10秒前
李健应助毛子涵采纳,获得10
10秒前
天天快乐应助笑点低的不采纳,获得10
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582