亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Green fabrication of h-BN/g-C3N4 with efficient holes transfer towards highly improved photocatalytic CO2 reduction and RhB degradation

材料科学 光催化 降级(电信) 制作 还原(数学) 光敏性 复合数 化学工程 载流子 复合材料 可见光谱 带隙 光电子学 纳米技术 催化作用 电子工程 病理 工程类 医学 化学 生物化学 数学 替代医学 几何学
作者
Wei Liu,Wenna Hu
出处
期刊:Materials Characterization [Elsevier]
卷期号:191: 112165-112165 被引量:13
标识
DOI:10.1016/j.matchar.2022.112165
摘要

The aim of this paper was to arise more attention to accelerating the separation and migration of photoexcited holes in the enhanced photocatalytic performances of composites. The highly effective h-BN/g-C3N4 was fabricated via an economical and environment-protecting way. Different characterization techniques were utilized to examine the crystal structure, morphology, interface, optical property and specific surface of photocatalysts. Their photosensitivity properties, resistance for charge migration and flat-band potentials were explored by the photoelectrochemical analysis. Remarkably, a substantially larger visible-light catalytic CO2 reduction of these composites was observed in contrast to pristine g-C3N4. The composite had the optimum BN dosage of 1 wt% and possessed good stability. The best kinetic constant of RhB degradation was 7.3 times that of bulk g-C3N4. Plate-like negatively charged BN as an efficient transfer of photoinduced holes were primarily responsible for the highly effective carriers separation in these prepared composites, thus contributing to much more electrons maintained on the conduction band of g-C3N4 with powerful reduction potential to easily induce reduction reactions and the enhanced photocatalytic performance. The present study offers valuable insights into designing of other fresh composites with efficient holes transfer, as well as an approach to resolve the low energy conversing efficiency of g-C3N4 in photocatalytic CO2 reduction and comprehensive ecological improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
赫如冰完成签到 ,获得积分10
5秒前
小马嘻嘻发布了新的文献求助10
6秒前
inRe完成签到,获得积分10
9秒前
爆米花应助周同学采纳,获得10
18秒前
24秒前
27秒前
琪琪完成签到,获得积分10
27秒前
周同学发布了新的文献求助10
30秒前
琪琪发布了新的文献求助10
33秒前
42秒前
PAIDAXXXX完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
49秒前
Ava应助琪琪采纳,获得10
51秒前
在水一方应助一念莲花舟采纳,获得10
52秒前
53秒前
57秒前
zwx发布了新的文献求助10
57秒前
57秒前
cao发布了新的文献求助10
1分钟前
魏头头发布了新的文献求助10
1分钟前
李健的粉丝团团长应助zwx采纳,获得10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
yong发布了新的文献求助10
1分钟前
魏头头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hyss发布了新的文献求助10
1分钟前
科研通AI2S应助周同学采纳,获得10
1分钟前
1分钟前
Ava应助曼波采纳,获得10
1分钟前
1分钟前
bji完成签到,获得积分10
1分钟前
周同学发布了新的文献求助10
1分钟前
1分钟前
amengptsd完成签到,获得积分10
1分钟前
酷波er应助外向青筠采纳,获得100
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701398
关于积分的说明 14913466
捐赠科研通 4747991
什么是DOI,文献DOI怎么找? 2549221
邀请新用户注册赠送积分活动 1512307
关于科研通互助平台的介绍 1474065