Green fabrication of h-BN/g-C3N4 with efficient holes transfer towards highly improved photocatalytic CO2 reduction and RhB degradation

材料科学 光催化 降级(电信) 制作 还原(数学) 光敏性 复合数 化学工程 载流子 复合材料 可见光谱 带隙 光电子学 纳米技术 催化作用 电子工程 生物化学 数学 几何学 工程类 病理 替代医学 化学 医学
作者
Wei Liu,Wenna Hu
出处
期刊:Materials Characterization [Elsevier]
卷期号:191: 112165-112165 被引量:13
标识
DOI:10.1016/j.matchar.2022.112165
摘要

The aim of this paper was to arise more attention to accelerating the separation and migration of photoexcited holes in the enhanced photocatalytic performances of composites. The highly effective h-BN/g-C3N4 was fabricated via an economical and environment-protecting way. Different characterization techniques were utilized to examine the crystal structure, morphology, interface, optical property and specific surface of photocatalysts. Their photosensitivity properties, resistance for charge migration and flat-band potentials were explored by the photoelectrochemical analysis. Remarkably, a substantially larger visible-light catalytic CO2 reduction of these composites was observed in contrast to pristine g-C3N4. The composite had the optimum BN dosage of 1 wt% and possessed good stability. The best kinetic constant of RhB degradation was 7.3 times that of bulk g-C3N4. Plate-like negatively charged BN as an efficient transfer of photoinduced holes were primarily responsible for the highly effective carriers separation in these prepared composites, thus contributing to much more electrons maintained on the conduction band of g-C3N4 with powerful reduction potential to easily induce reduction reactions and the enhanced photocatalytic performance. The present study offers valuable insights into designing of other fresh composites with efficient holes transfer, as well as an approach to resolve the low energy conversing efficiency of g-C3N4 in photocatalytic CO2 reduction and comprehensive ecological improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何青岚关注了科研通微信公众号
1秒前
doudou完成签到,获得积分20
1秒前
李健的小迷弟应助潦草采纳,获得10
1秒前
2秒前
2秒前
2秒前
柒八染完成签到,获得积分10
2秒前
wsljc134完成签到,获得积分20
2秒前
3秒前
善良香岚完成签到,获得积分20
3秒前
3秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
不安太阳完成签到,获得积分10
4秒前
t_suo完成签到,获得积分10
4秒前
bioinforiver完成签到,获得积分10
4秒前
乐观跳跳糖完成签到,获得积分10
4秒前
4秒前
WxChen发布了新的文献求助10
5秒前
5秒前
酷炫的香魔完成签到,获得积分10
5秒前
5秒前
5秒前
NexusExplorer应助无奈满天采纳,获得10
5秒前
qwt_hello完成签到,获得积分10
5秒前
5秒前
海涛完成签到,获得积分10
6秒前
星星发布了新的文献求助10
7秒前
qq完成签到,获得积分10
7秒前
7秒前
7秒前
中央戏精学院完成签到,获得积分10
7秒前
寒冷依秋完成签到,获得积分10
7秒前
彭于晏应助jogrgr采纳,获得10
7秒前
思源应助momo采纳,获得10
8秒前
guozi应助yi采纳,获得10
8秒前
科研通AI2S应助鲤鱼凛采纳,获得10
8秒前
8秒前
kumarr发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759