神经炎症
黑质
蛋白激酶B
氧化应激
莫里斯水上航行任务
化学
MPTP公司
酪氨酸羟化酶
药理学
多巴胺能
内分泌学
生物
内科学
信号转导
医学
生物化学
多巴胺
炎症
海马体
作者
Lei Guo,Yuanyuan Li,Wenna Li,Jiaoxue Qiu,Juan Du,Li Wang,Ting Zhang
标识
DOI:10.1111/1440-1681.13709
摘要
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Shikonin plays protective roles in age-associated diseases. Therefore, we investigate the biological functions of shikonin and its mechanisms involved in PD pathogenesis. The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to mimic PD-like conditions in animal models. The learning and memory capacities were assessed by Morris water-maze test, pole test, locomotor activity test and rotarod test. Neuroinflammation was determined by measuring the levels of tumour necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The quantification of superoxide dismutase, malondialdehyde and glutathione in substantia nigra was performed to estimate oxidative damage. Histopathologic changes were examined by haematoxylin and eosin staining. Immunofluorescence staining was conducted to determine the activation of astrocytes, tyrosine hydroxylase (TH)-positive neurons, and nuclear translocation of p65. Immunohistochemistry was performed to evaluate dopamine transporter (DAT)-positive neurons. Protein levels were measured by western blotting. Shikonin alleviates the cognitive and behavioural impairments. The death of dopaminergic neurons in nigra was attenuated by shikonin. The MPTP-induced neuroinflammation and oxidative stress in substantia nigra were alleviated by shikonin administration. Shikonin ameliorated the neuronal damage in nigra and inhibited the activation of astrocyte. Shikonin modulated the protein kinase B (Akt)/extracellular regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/nuclear factor κB (NF-κB) pathways. Shikonin ameliorates dopaminergic neuronal apoptosis by inhibiting oxidative stress and neuroinflammation via the Akt/ERK/JNK/NF-κB pathways in PD. The study has several limitations. First, in a previous study, levels of phosphorylated ERK were increased by MPTP. In our current study, we observed decreased p-ERK in nigra following MPTP treatment. Therefore, further investigation in the mechanisms of shikonin against PD progression is required. Second, the biological functions of shikonin need more exploration, including mitochondrial function and autophagy. Moreover, specific molecular targets for shikonin remain uncertain.
科研通智能强力驱动
Strongly Powered by AbleSci AI