A review of statistical strategies to integrate biomarkers of chemical exposure with biomarkers of effect applied in omic-scale environmental epidemiology

暴露的 环境流行病学 数据科学 工作流程 仿形(计算机编程) 组学 计算生物学 计算机科学 生物信息学 环境卫生 生物 医学 数据库 操作系统
作者
Étienne Babin,Germán Cano-Sancho,Évelyne Vigneau,Jean-Philippe Antignac
出处
期刊:Environmental Pollution [Elsevier]
卷期号:330: 121741-121741
标识
DOI:10.1016/j.envpol.2023.121741
摘要

Humans are exposed to a growing list of synthetic chemicals, some of them becoming a major public health concern due to their capacity to impact multiple biological endpoints and contribute to a range of chronic diseases. The integration of endogenous (omic) biomarkers of effect in environmental health studies has been growing during the last decade, aiming to gain insight into potential mechanisms linking the exposures and the clinical conditions. The emergence of high-throughput omic platforms has raised a list of statistical challenges posed by the large dimension and complexity of data generated. Thus, the aim of the present study was to critically review the current state-of-the-science about statistical approaches used to integrate endogenous biomarkers in environmental-health studies linking chemical exposures with health outcomes. The present review specifically focused on internal exposure to environmental chemical pollutants, involving both persistent organic pollutants (POPs) and non-persistent pollutants like phthalates or bisphenols, and metals. We identified 42 eligible articles published since 2016, reporting 48 different statistical workflows, mostly focused on POPs and using metabolomic profiling in the intermediate layer. The outcomes were mainly binary and focused on metabolic disorders. A large diversity of statistical strategies were reported to integrate chemical mixtures and endogenous biomarkers to characterize their associations with health conditions. Multivariate regression models were the most predominant statistical method reported in the published workflows, however some studies applied latent based methods or multipollutant models to overcome the specific constraints of omic or exposure data. A minority of studies used formal mediation analysis to characterize the indirect effects mediated by the endogenous biomarkers. The principles of each specific statistical method and overall workflow set-up are summarized in the light of highlighting their applicability, strengths and weaknesses or interpretability to gain insight into the causal structures underlying the triad: exposure, effect-biomarker and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
不才完成签到,获得积分10
4秒前
4秒前
慕青应助dzy1317采纳,获得10
5秒前
阳光完成签到,获得积分10
5秒前
嘟嘟雯完成签到 ,获得积分10
5秒前
小蘑菇应助DrKe采纳,获得10
5秒前
我是老大应助葳蕤苍生采纳,获得10
6秒前
1310发布了新的文献求助10
6秒前
jack应助Scarlett采纳,获得10
7秒前
小文cremen发布了新的文献求助10
7秒前
鸡蛋灌饼完成签到,获得积分10
7秒前
云宇发布了新的文献求助10
7秒前
9秒前
无花果应助魔幻的盼秋采纳,获得80
9秒前
自觉画笔完成签到 ,获得积分10
9秒前
俏皮的松鼠完成签到 ,获得积分10
9秒前
慕青应助牪犇采纳,获得10
9秒前
10秒前
健壮发夹发布了新的文献求助10
10秒前
深情海秋完成签到,获得积分10
10秒前
活泼新儿发布了新的文献求助10
11秒前
11秒前
11秒前
科研狗完成签到,获得积分10
11秒前
雨落瑾年完成签到,获得积分10
11秒前
12秒前
彭于晏应助小文cremen采纳,获得10
12秒前
13秒前
美少叔叔完成签到 ,获得积分10
14秒前
科研通AI2S应助俏皮的未来采纳,获得10
14秒前
香蕉觅云应助俏皮的未来采纳,获得10
14秒前
hzuii完成签到,获得积分10
15秒前
学术小白发布了新的文献求助10
15秒前
苹果小小完成签到,获得积分20
15秒前
Berberin完成签到,获得积分10
15秒前
科研通AI2S应助HUuu采纳,获得10
15秒前
Jimmy完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813599
关于积分的说明 7901187
捐赠科研通 2473168
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175