Medical image fusion based on extended difference-of-Gaussians and edge-preserving

计算机科学 GSM演进的增强数据速率 能量(信号处理) 人工智能 图像(数学) 融合规则 融合 图像融合 计算机视觉 滤波器(信号处理) 突出 模式识别(心理学) 数学 语言学 哲学 统计
作者
Yuchan Jie,Xiaosong Li,Mingyi wang,Fuqiang Zhou,Haishu Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120301-120301 被引量:26
标识
DOI:10.1016/j.eswa.2023.120301
摘要

Multimodal medical image fusion extracts useful information from different modal medical images and integrates them into one image for a comprehensive and objective lesion description. However, existing methods ignore the simultaneous retention of significant edge and energy information that reflect lesion characteristics in medical images; this affects the application value of medical image fusion in computer aided diagnosis. This paper proposes a novel medical image fusion scheme based on extended difference-of-Gaussians (XDoG) and edge-preserving. A simple yet effective energy-based scheme was developed to generate the fused energy layer, which helped preserve energy. Moreover, the averaging filter was used to generate the detail layers of source images. The fusion of detail layers was considered the combination of significant and non-significant edge information. A rule of the detail layer with a salient edge based on edge extraction operator XDoG was proposed to efficiently detect the salient structure of the significant edges, and a spatial frequency energy operator was developed to detect the gradient and energy of non-significant information. The fused result could be reconstructed by synthesizing the fused energy layer and details of significant and non-significant edges. Experiments demonstrated that the proposed approach outperforms some advanced fusion methods in terms of subjective and objective assessment. The code of this paper is available at https://github.com/JEI981214/FGF-and-XDoG-based.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
m李发布了新的文献求助10
刚刚
lesyeuxdexx完成签到 ,获得积分10
1秒前
asdfqwer应助画凌烟采纳,获得10
2秒前
认真谷雪发布了新的文献求助10
2秒前
柯一一应助王雯雯采纳,获得10
3秒前
研友_89jr6L发布了新的文献求助10
3秒前
认真谷雪完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
繁荣的哲瀚完成签到,获得积分10
10秒前
柯一一应助淡淡博采纳,获得10
12秒前
三块石头发布了新的文献求助10
13秒前
13秒前
biochen完成签到,获得积分10
13秒前
14秒前
Rondab应助Rita采纳,获得10
15秒前
完美世界应助文天采纳,获得10
15秒前
忧郁四娘完成签到,获得积分10
17秒前
张涛发布了新的文献求助10
18秒前
19秒前
汉堡包应助鱼干采纳,获得10
19秒前
Marciu33发布了新的文献求助20
25秒前
鲁路修完成签到,获得积分10
26秒前
28秒前
29秒前
搬砖人完成签到,获得积分10
29秒前
Xieyusen发布了新的文献求助10
33秒前
123发布了新的文献求助70
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
yznfly应助科研通管家采纳,获得50
34秒前
852应助科研通管家采纳,获得10
34秒前
fgd应助科研通管家采纳,获得10
34秒前
ding应助科研通管家采纳,获得10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579