Medical image fusion based on extended difference-of-Gaussians and edge-preserving

计算机科学 GSM演进的增强数据速率 能量(信号处理) 人工智能 图像(数学) 融合规则 融合 图像融合 计算机视觉 滤波器(信号处理) 突出 模式识别(心理学) 数学 语言学 哲学 统计
作者
Yuchan Jie,Xiaosong Li,Mingyi wang,Fuqiang Zhou,Haishu Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120301-120301 被引量:19
标识
DOI:10.1016/j.eswa.2023.120301
摘要

Multimodal medical image fusion extracts useful information from different modal medical images and integrates them into one image for a comprehensive and objective lesion description. However, existing methods ignore the simultaneous retention of significant edge and energy information that reflect lesion characteristics in medical images; this affects the application value of medical image fusion in computer aided diagnosis. This paper proposes a novel medical image fusion scheme based on extended difference-of-Gaussians (XDoG) and edge-preserving. A simple yet effective energy-based scheme was developed to generate the fused energy layer, which helped preserve energy. Moreover, the averaging filter was used to generate the detail layers of source images. The fusion of detail layers was considered the combination of significant and non-significant edge information. A rule of the detail layer with a salient edge based on edge extraction operator XDoG was proposed to efficiently detect the salient structure of the significant edges, and a spatial frequency energy operator was developed to detect the gradient and energy of non-significant information. The fused result could be reconstructed by synthesizing the fused energy layer and details of significant and non-significant edges. Experiments demonstrated that the proposed approach outperforms some advanced fusion methods in terms of subjective and objective assessment. The code of this paper is available at https://github.com/JEI981214/FGF-and-XDoG-based.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进取拼搏完成签到,获得积分10
刚刚
hehsk完成签到,获得积分10
刚刚
无限鞅完成签到,获得积分20
刚刚
1秒前
DY完成签到 ,获得积分10
2秒前
郑仕完成签到,获得积分10
2秒前
2秒前
进取拼搏发布了新的文献求助10
3秒前
顺顺发布了新的文献求助10
3秒前
3秒前
在水一方应助涛涛采纳,获得10
3秒前
英姑应助义气的傲松采纳,获得10
4秒前
4秒前
哭泣蛋挞完成签到 ,获得积分10
5秒前
sweetbearm应助通~采纳,获得10
5秒前
田様应助吃饭用大碗采纳,获得10
6秒前
6秒前
7秒前
8秒前
阿斯蒂和琴酒完成签到 ,获得积分10
8秒前
珂珂发布了新的文献求助10
10秒前
10秒前
迟大猫应助我是站长才怪采纳,获得30
10秒前
11秒前
BaekHyun发布了新的文献求助10
11秒前
背后翠梅发布了新的文献求助30
11秒前
CCR发布了新的文献求助10
11秒前
su发布了新的文献求助10
13秒前
善学以致用应助钰c采纳,获得10
13秒前
Fundamental完成签到,获得积分20
14秒前
通~发布了新的文献求助10
14秒前
Akim应助阿屁屁猪采纳,获得10
14秒前
15秒前
细雨听风发布了新的文献求助10
15秒前
15秒前
英俊的小松鼠完成签到,获得积分10
15秒前
16秒前
18秒前
cc完成签到,获得积分20
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808