Medical image fusion based on extended difference-of-Gaussians and edge-preserving

计算机科学 GSM演进的增强数据速率 能量(信号处理) 人工智能 图像(数学) 融合规则 融合 图像融合 计算机视觉 滤波器(信号处理) 突出 模式识别(心理学) 数学 语言学 统计 哲学
作者
Yuchan Jie,Xiaosong Li,Mingyi wang,Fuqiang Zhou,Haishu Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120301-120301 被引量:43
标识
DOI:10.1016/j.eswa.2023.120301
摘要

Multimodal medical image fusion extracts useful information from different modal medical images and integrates them into one image for a comprehensive and objective lesion description. However, existing methods ignore the simultaneous retention of significant edge and energy information that reflect lesion characteristics in medical images; this affects the application value of medical image fusion in computer aided diagnosis. This paper proposes a novel medical image fusion scheme based on extended difference-of-Gaussians (XDoG) and edge-preserving. A simple yet effective energy-based scheme was developed to generate the fused energy layer, which helped preserve energy. Moreover, the averaging filter was used to generate the detail layers of source images. The fusion of detail layers was considered the combination of significant and non-significant edge information. A rule of the detail layer with a salient edge based on edge extraction operator XDoG was proposed to efficiently detect the salient structure of the significant edges, and a spatial frequency energy operator was developed to detect the gradient and energy of non-significant information. The fused result could be reconstructed by synthesizing the fused energy layer and details of significant and non-significant edges. Experiments demonstrated that the proposed approach outperforms some advanced fusion methods in terms of subjective and objective assessment. The code of this paper is available at https://github.com/JEI981214/FGF-and-XDoG-based.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
张亚博发布了新的文献求助10
2秒前
3秒前
3秒前
汉堡包应助shhoing采纳,获得20
5秒前
ZAL完成签到,获得积分10
5秒前
小朱完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
看一千次海完成签到,获得积分10
9秒前
MaFY发布了新的文献求助10
10秒前
zzz发布了新的文献求助10
15秒前
燃烧的皮皮虾完成签到,获得积分10
15秒前
脑洞疼应助刘松采纳,获得10
15秒前
majuanwei完成签到,获得积分10
16秒前
Accept完成签到,获得积分10
18秒前
cavendipeng完成签到,获得积分10
20秒前
24秒前
从心随缘完成签到 ,获得积分10
24秒前
刀锋完成签到,获得积分10
25秒前
wanci应助ch采纳,获得10
25秒前
26秒前
hsy发布了新的文献求助10
31秒前
七七完成签到 ,获得积分10
33秒前
那时花开应助dulu采纳,获得10
33秒前
YingxueRen完成签到,获得积分10
34秒前
斩封完成签到,获得积分20
36秒前
火火火完成签到,获得积分10
37秒前
37秒前
路宇鹏完成签到,获得积分10
38秒前
Chaiyuan完成签到 ,获得积分10
40秒前
40秒前
斩封发布了新的文献求助10
41秒前
photogragher发布了新的文献求助10
41秒前
顾矜应助田宇采纳,获得10
42秒前
hsy完成签到,获得积分10
43秒前
43秒前
44秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380142
求助须知:如何正确求助?哪些是违规求助? 4504163
关于积分的说明 14017516
捐赠科研通 4413104
什么是DOI,文献DOI怎么找? 2424070
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394678