Deep Learning–Based Estimation of Implantable Collamer Lens Vault Using Optical Coherence Tomography

光学相干层析成像 皮尔逊积矩相关系数 均方误差 相关系数 平均绝对百分比误差 人工神经网络 卡钳 人工智能 核医学 医学 决定系数 数学 计算机科学 统计 眼科 几何学
作者
Jad F. Assaf,Dan Z. Reinstein,Cyril Zakka,Juan Arbelaez,Peter Boufadel,Mathieu Choufani,Timothy J. Archer,Perla Ibrahim,Shady T. Awwad
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:253: 29-36 被引量:3
标识
DOI:10.1016/j.ajo.2023.04.008
摘要

•Deep learning neural network developed to automate measurement of ICL vault using AS-OCT. •Validated using 2647 scans from 139 eyes of 82 subjects from 3 different centers. •Model achieved a MAPE of 3.42%, MAE of 15.82 µm, RMSE of 18.85 µm, Pearson correlation coefficient r of +0.98, and coefficient of determination R2 of +0.96. •The model assists postoperative assessment in ICL surgery, reducing time and potential bias of manual measurements. PURPOSE To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). DESIGN Cross-sectional retrospective study. METHODS A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. RESULTS On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). CONCLUSIONS Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秃瓢完成签到,获得积分10
1秒前
木木发布了新的文献求助10
2秒前
Janisa完成签到,获得积分10
2秒前
3秒前
Jasper应助keyantong采纳,获得10
3秒前
BINBIN发布了新的文献求助10
3秒前
3秒前
4秒前
朴素的不乐完成签到 ,获得积分10
4秒前
Tal完成签到,获得积分10
4秒前
Ono发布了新的文献求助10
5秒前
7秒前
烤地瓜应助负责的方盒采纳,获得10
7秒前
11发布了新的文献求助10
9秒前
keyantong完成签到,获得积分10
9秒前
10秒前
10秒前
迷路的沛芹完成签到 ,获得积分10
11秒前
传奇3应助菜吃饭采纳,获得10
13秒前
jinyu完成签到,获得积分10
14秒前
LXX发布了新的文献求助10
14秒前
火星上的若颜完成签到,获得积分10
15秒前
keyantong发布了新的文献求助10
16秒前
老年蚕豆婧完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
斯文败类应助从容安珊采纳,获得10
17秒前
无名老大应助科研通管家采纳,获得30
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
无名老大应助科研通管家采纳,获得30
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
19秒前
xiaoq发布了新的文献求助10
19秒前
彭于晏应助11采纳,获得10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412586
求助须知:如何正确求助?哪些是违规求助? 3015222
关于积分的说明 8869350
捐赠科研通 2702937
什么是DOI,文献DOI怎么找? 1481967
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679758