Deep Learning–Based Estimation of Implantable Collamer Lens Vault Using Optical Coherence Tomography

光学相干层析成像 皮尔逊积矩相关系数 均方误差 相关系数 平均绝对百分比误差 人工神经网络 卡钳 人工智能 核医学 医学 决定系数 数学 计算机科学 统计 眼科 几何学
作者
Jad F. Assaf,Dan Z. Reinstein,Cyril Zakka,Juan Arbelaez,Peter Boufadel,Mathieu Choufani,Timothy J. Archer,Perla Ibrahim,Shady T. Awwad
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:253: 29-36 被引量:3
标识
DOI:10.1016/j.ajo.2023.04.008
摘要

•Deep learning neural network developed to automate measurement of ICL vault using AS-OCT. •Validated using 2647 scans from 139 eyes of 82 subjects from 3 different centers. •Model achieved a MAPE of 3.42%, MAE of 15.82 µm, RMSE of 18.85 µm, Pearson correlation coefficient r of +0.98, and coefficient of determination R2 of +0.96. •The model assists postoperative assessment in ICL surgery, reducing time and potential bias of manual measurements. PURPOSE To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). DESIGN Cross-sectional retrospective study. METHODS A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. RESULTS On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). CONCLUSIONS Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼镜胖子完成签到,获得积分10
1秒前
2秒前
sikaixue发布了新的文献求助10
3秒前
善学以致用应助linggle采纳,获得10
4秒前
是小志完成签到,获得积分10
5秒前
6秒前
ljz发布了新的文献求助10
6秒前
小李子完成签到 ,获得积分10
7秒前
8秒前
小齐天完成签到,获得积分10
8秒前
她很可疑啊完成签到,获得积分20
9秒前
10秒前
xiongyh10完成签到,获得积分10
11秒前
JamesPei应助耀阳采纳,获得10
12秒前
12秒前
脑洞疼应助ljz采纳,获得30
13秒前
敏感妙松发布了新的文献求助80
13秒前
zhangyu应助萄哥布鸽采纳,获得20
14秒前
14秒前
cc发布了新的文献求助10
15秒前
16秒前
sikaixue完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
酷波er应助佳期如梦采纳,获得10
19秒前
dongan发布了新的文献求助30
20秒前
20秒前
21秒前
山城小丸完成签到 ,获得积分10
22秒前
2Y发布了新的文献求助10
23秒前
AM发布了新的文献求助10
23秒前
23秒前
24秒前
顾矜应助jiangmingjiao采纳,获得10
24秒前
zzz发布了新的文献求助30
25秒前
25秒前
耀阳发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070