Construction and Application of LSTM-Based Prediction Model for Tunnel Surrounding Rock Deformation

均方误差 人工神经网络 计算机科学 人工智能 深度学习 结算(财务) 循环神经网络 变形(气象学) 过程(计算) 时间序列 机器学习 算法 数据挖掘 地质学 统计 数学 海洋学 万维网 付款 操作系统
作者
Yongchao He,Qiunan Chen
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (8): 6877-6877 被引量:12
标识
DOI:10.3390/su15086877
摘要

Tunnel surrounding rock deformation is a significant issue in tunnel construction and maintenance and has garnered attention from both domestic and international scholars. Traditional methods of predicting tunnel surrounding rock deformation involve fitting monitoring and measuring data, which is a laborious and resource-intensive process with low accuracy when predicting data with significant fluctuations. A deep learning approach can improve monitoring efficiency and accuracy while reducing labor costs. In this study, taking an actual tunnel project as an example, a long short-term memory (LSTM) network model was constructed based on the recurrent neural network algorithm with deep learning to model and analyze the tunnel monitoring and measurement data, and the model was used to analyze and predict the vault settlement of the tunnel. LSTM is a type of artificial neural network architecture that is commonly used in deep learning applications for sequence prediction tasks, such as natural language processing, speech recognition, and time-series forecasting. In predicting data with smaller fluctuations, the maximum error is 4.76 mm, the minimum error is 0.03 mm, the root mean square error is 2.64, and the coefficient of determination is 0.98. In predicting data with larger fluctuations, the maximum error is 8.32 mm, the minimum error is 0.13 mm, the root mean square error is 4.42, and the coefficient of determination is 0.88. The average error of the LSTM network model is 2.16 mm. With the growth of the prediction period, the prediction results become more and more stable and closer to the actual vault settlement, which provides a reliable reference for introducing the LSTM prediction method with deep learning to tunnel construction and promoting tunnel construction safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白夜发布了新的文献求助10
刚刚
David发布了新的文献求助10
1秒前
lx发布了新的文献求助10
1秒前
1秒前
烟花应助结实的荷采纳,获得10
1秒前
莱特昊发布了新的文献求助10
1秒前
现在毕业完成签到,获得积分10
1秒前
smj完成签到,获得积分10
1秒前
吴五五完成签到,获得积分10
2秒前
酥酥发布了新的文献求助10
2秒前
2秒前
整齐的宝马给整齐的宝马的求助进行了留言
2秒前
2秒前
黎少俊完成签到,获得积分10
3秒前
4秒前
吴五五发布了新的文献求助10
5秒前
5秒前
lee完成签到,获得积分10
5秒前
科研通AI2S应助我要毕业采纳,获得20
5秒前
TZZZ完成签到,获得积分10
5秒前
6秒前
平淡的伯云完成签到,获得积分10
6秒前
田様应助胖虎不胖采纳,获得10
6秒前
1213发布了新的文献求助10
6秒前
xiao发布了新的文献求助10
6秒前
星辰大海应助和谐尔阳采纳,获得10
6秒前
7秒前
7秒前
bkagyin应助ll采纳,获得10
7秒前
8秒前
榴莲奶贝完成签到,获得积分10
8秒前
甜美白云发布了新的文献求助10
8秒前
9秒前
Cora发布了新的文献求助10
9秒前
9秒前
YANG发布了新的文献求助10
9秒前
9秒前
9秒前
江上清风游完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488153
求助须知:如何正确求助?哪些是违规求助? 3075945
关于积分的说明 9142731
捐赠科研通 2768153
什么是DOI,文献DOI怎么找? 1519077
邀请新用户注册赠送积分活动 703495
科研通“疑难数据库(出版商)”最低求助积分说明 701922