复合数
微波食品加热
材料科学
反射损耗
异质结
阻抗匹配
电介质
衰减
复合材料
光电子学
电阻抗
光学
电气工程
计算机科学
物理
电信
工程类
作者
Li Wang,Runrun Cheng,Wen-Gang Cui,Zhao Lu,Yaxiong Yang,Hongge Pan,Renchao Che
出处
期刊:Carbon
[Elsevier]
日期:2023-06-01
卷期号:210: 118043-118043
被引量:38
标识
DOI:10.1016/j.carbon.2023.118043
摘要
In an era dominated by electronic equipment, the development of high-efficiency electromagnetic wave (EMW) absorbers is of great significance in solving the problem of electromagnetic (EM) pollution. Heterointerface engineering for optimizing EMW absorption performance depends on the design of vacancy, defect, and heterogeneous interface, which remains a considerable challenge in adjusting the micro and macro-interface effects. In this work, S atoms are incorporated into a dielectric-magnetic complementary system (Fe3O4/Fe7S8@C) to arouse the polarization effect of vacancies, defects, and non-uniform interfaces, thus tremendously boosting the EM energy attenuation capacity. Besides, the carbon shell provides more propagation paths for the dissipation of EMWs, and dielectric-magnetic synergy improves impedance matching. Eventually, in comparison with Fe2O3 and Fe3O4@C composites, interface-engineered Fe3O4/Fe7S8@C acquires a much better EM wave absorption performance. Its minimum reflection loss value reaches as much as −56.2 dB with a thickness of only 1.6 mm, and the corresponding effective absorption bandwidth (EAB) is up to 4.5 GHz. This unique hydrangea-like layered structure provides space to facilitate non-uniform coupling between the layers and has strong anisotropy to enhance the magnetic response. The high density of magnetic flux in the nanosheets builds a three-dimensional magnetic coupling network, which is supported by off-axis electron holography. Besides, the radar cross section from HFSS simulation further confirms that S-doping can favor the best synergy between dielectric and magnetic losses, facilitating the composite to achieve a more optimal impedance matching and improve the absorption capacity. In conclusion, this work presents new ideas for the design of excellent absorbing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI