PMC-LLaMA: Towards Building Open-source Language Models for Medicine

计算机科学 领域(数学分析) 答疑 语言模型 过程(计算) 开源 自然语言处理 自然语言 人工智能 数据科学 程序设计语言 数学 数学分析 软件
作者
Chaoyi Wu,Xiaoman Zhang,Ya Zhang,Yanfeng Wang,Weidi Xie
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2304.14454
摘要

Recently, Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this paper, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Our contributions are threefold: (i) we systematically investigate the process of adapting a general-purpose foundation language model towards medical domain, this involves data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive fine-tuning for alignment with domain-specific instructions; (ii) we contribute a large-scale, comprehensive dataset for instruction tuning. This dataset encompasses medical question-answering (QA), rationale for reasoning, and conversational dialogues, comprising a total of 202M tokens; (iii) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component. While evaluating on various public medical question-answering benchmarks, our lightweight PMCLLaMA, which consists of only 13 billion parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, datasets can be found in https://github.com/chaoyi-wu/PMC-LLaMA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
星城浮轩完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
xiaoyu完成签到,获得积分10
8秒前
maclogos发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
xiezizai完成签到,获得积分10
14秒前
Tom完成签到,获得积分10
18秒前
23秒前
WYN完成签到,获得积分10
26秒前
科研通AI6.1应助迷人灵采纳,获得10
26秒前
顺利问玉完成签到 ,获得积分10
27秒前
chens627完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
半颗橙子完成签到 ,获得积分10
31秒前
隐形曼青应助maclogos采纳,获得20
31秒前
大雪完成签到 ,获得积分10
32秒前
wwrjj完成签到,获得积分0
42秒前
sincyking完成签到,获得积分10
43秒前
CASLSD完成签到 ,获得积分10
46秒前
NexusExplorer应助南岸采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796220
求助须知:如何正确求助?哪些是违规求助? 5774026
关于积分的说明 15491484
捐赠科研通 4923229
什么是DOI,文献DOI怎么找? 2650266
邀请新用户注册赠送积分活动 1597504
关于科研通互助平台的介绍 1552087