材料科学
电介质
聚合物
复合数
量子点
纳米复合材料
储能
聚合物纳米复合材料
纳米颗粒
复合材料
星团(航天器)
纳米技术
潜在井
光电子学
功率(物理)
物理
量子力学
计算机科学
程序设计语言
作者
Mingcong Yang,Shaojie Wang,Jing Fu,Yujie Zhu,Jiajie Liang,Sang Cheng,Shixun Hu,Jun Hu,Jinliang He,Qi Li
标识
DOI:10.1002/adma.202301936
摘要
Polymer dielectrics need to operate at high temperatures to meet the demand of electrostatic energy storage in modern electronic and electrical systems. The polymer nanocomposite approach, an extensively proved strategy for performance improvement, encounters a bottleneck of reduced energy density and poor discharge efficiency beyond 150 °C. In this work, a polymer/metal oxide cluster composite prepared based on the "site isolation" strategy is reported. Capitalizing on the quantum size effect, the bandgap and surface defect states of the ultrasmall inorganic clusters (2.2 nm diameter) are modulated to markedly differ from regular-sized nanoparticles. Experimental results in conjunction with computational simulation demonstrate that the presence of ultrasmall inorganic clusters can introduce more abundant, deeper traps in the composite dielectric with respect to conventional polymer/nanoparticle blends. Unprecedented high-temperature capacitive performance, including colossal energy density (6.8 J cm-3 ), ultrahigh discharge efficiency (95%) and superior stability at different electric field frequencies, are achieved in these polymer/cluster composites up to 200 °C. Along with the advantages in material preparation (inexpensive precursors and one-pot synthesis), such polymer/inorganic cluster composite approach is promising for high-temperature dielectric energy storage in practical power apparatus and electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI