3D convolutional neural Network-based 3D mineral prospectivity modeling for targeting concealed mineralization within Chating area, middle-lower Yangtze River metallogenic Belt, China

远景图 地质学 矿化(土壤科学) 长江 支持向量机 矿产勘查 卷积神经网络 地质图 地球化学 采矿工程 中国 地貌学 人工智能 计算机科学 土壤科学 构造盆地 土壤水分 政治学 法学
作者
Xiaohui Li,Xue Chen,Yuheng Chen,Yuan Feng,Yue Li,Chaojie Zheng,Mingming Zhang,Can Ge,Dong Guo,Xueyi Lan,Minhui Tang,Sanming Lu
出处
期刊:Ore Geology Reviews [Elsevier]
卷期号:157: 105444-105444 被引量:15
标识
DOI:10.1016/j.oregeorev.2023.105444
摘要

The Chating area is situated within the Middle-Lower Yangtze River Metallogenic Belt, China. Several concealed skarn and porphyry-type deposits have been discovered in this area, indicating high potential for hosting hydrothermal deposits. However, due to the complex geological structure, exploration risks significantly increase with increasing depth. To overcome this challenge, three-dimensional mineral prospectivity modeling (3DMPM) has begun to be widely applied for mapping the prospectivity of deep-seated and concealed mineralization. However, most previous studies on 3DMPM were based on shallow supervised machine learning models and dimensionality-reduced 3D predictive maps. Although these models have shown good results, they may lose spatial correlation within the 3D predictive maps and fail to explore nonlinear correlations between the 3D predictive maps and mineralization. Meanwhile, 3D geological models are the most important basis of the 3DMPM, however, in the past, few studies have incorporated the optimization of the 3D geological models into the process of 3DMPM. Therefore, this paper initially builds and optimizes 3D geological models through implicit 3D geological modeling and "total litho-inversion" approach. Subsequently, the 3D predictive maps are generated by employing various 3D methods, which are further integrated using a 3D convolutional neural network (3D CNN) model to identify highly prospective areas for mineralization. The results show that the highly prospective areas identified by the 3DMPM include not only the training data but also other mineral deposits that have previously been discovered within the study area. In addition, compared with the Logistic Regression model (LR), Support Vector Machines (SVM), and Radom Forest (RF), the 3D CNN performs better prediction capabilities due to its enhanced ability to capture the correlations between 3D predictive maps and multiple types of mineral deposits. It suggests that the 3DMPM based on the 3D CNN model has commendable predictive capabilities in identifying prospective mineralization areas, and some new highly prospective areas can be considered as priority areas for future exploration of concealed mineralization within the Chating Area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助刘大宝采纳,获得10
刚刚
刚刚
huang发布了新的文献求助10
刚刚
1秒前
童翰发布了新的文献求助10
1秒前
1秒前
姜姜发布了新的文献求助100
1秒前
1秒前
Aliaoovo完成签到,获得积分10
1秒前
啊娴仔完成签到,获得积分10
2秒前
2秒前
华仔应助YXH采纳,获得10
2秒前
你好吗发布了新的文献求助10
3秒前
中二少女爱喝可乐完成签到,获得积分10
3秒前
老宇发布了新的文献求助10
3秒前
花花发布了新的文献求助10
4秒前
江沅发布了新的文献求助10
4秒前
二十八发布了新的文献求助10
5秒前
5秒前
彭于晏应助陌路采纳,获得10
5秒前
5秒前
5秒前
搞怪南烟完成签到,获得积分10
5秒前
6秒前
zhaowenxian发布了新的文献求助10
6秒前
dxdy完成签到,获得积分10
6秒前
6秒前
6秒前
123完成签到,获得积分10
6秒前
珍珠妈妈发布了新的文献求助10
6秒前
tansl1989完成签到,获得积分20
8秒前
fsz发布了新的文献求助10
8秒前
上善若水发布了新的文献求助10
8秒前
taylorcurry发布了新的文献求助30
10秒前
童翰完成签到,获得积分10
10秒前
舒适鹏飞发布了新的文献求助10
10秒前
10秒前
刘大宝发布了新的文献求助10
11秒前
huahua发布了新的文献求助20
11秒前
11秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221535
求助须知:如何正确求助?哪些是违规求助? 2870209
关于积分的说明 8169557
捐赠科研通 2537019
什么是DOI,文献DOI怎么找? 1369271
科研通“疑难数据库(出版商)”最低求助积分说明 645397
邀请新用户注册赠送积分活动 619067