亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D convolutional neural Network-based 3D mineral prospectivity modeling for targeting concealed mineralization within Chating area, middle-lower Yangtze River metallogenic Belt, China

远景图 地质学 矿化(土壤科学) 长江 支持向量机 矿产勘查 卷积神经网络 地质图 地球化学 采矿工程 中国 地貌学 人工智能 计算机科学 土壤科学 构造盆地 土壤水分 政治学 法学
作者
Xiaohui Li,Xue Chen,Yuheng Chen,Yuan Feng,Yue Li,Chaojie Zheng,Mingming Zhang,Can Ge,Dong Guo,Xueyi Lan,Minhui Tang,Sanming Lu
出处
期刊:Ore Geology Reviews [Elsevier]
卷期号:157: 105444-105444 被引量:15
标识
DOI:10.1016/j.oregeorev.2023.105444
摘要

The Chating area is situated within the Middle-Lower Yangtze River Metallogenic Belt, China. Several concealed skarn and porphyry-type deposits have been discovered in this area, indicating high potential for hosting hydrothermal deposits. However, due to the complex geological structure, exploration risks significantly increase with increasing depth. To overcome this challenge, three-dimensional mineral prospectivity modeling (3DMPM) has begun to be widely applied for mapping the prospectivity of deep-seated and concealed mineralization. However, most previous studies on 3DMPM were based on shallow supervised machine learning models and dimensionality-reduced 3D predictive maps. Although these models have shown good results, they may lose spatial correlation within the 3D predictive maps and fail to explore nonlinear correlations between the 3D predictive maps and mineralization. Meanwhile, 3D geological models are the most important basis of the 3DMPM, however, in the past, few studies have incorporated the optimization of the 3D geological models into the process of 3DMPM. Therefore, this paper initially builds and optimizes 3D geological models through implicit 3D geological modeling and "total litho-inversion" approach. Subsequently, the 3D predictive maps are generated by employing various 3D methods, which are further integrated using a 3D convolutional neural network (3D CNN) model to identify highly prospective areas for mineralization. The results show that the highly prospective areas identified by the 3DMPM include not only the training data but also other mineral deposits that have previously been discovered within the study area. In addition, compared with the Logistic Regression model (LR), Support Vector Machines (SVM), and Radom Forest (RF), the 3D CNN performs better prediction capabilities due to its enhanced ability to capture the correlations between 3D predictive maps and multiple types of mineral deposits. It suggests that the 3DMPM based on the 3D CNN model has commendable predictive capabilities in identifying prospective mineralization areas, and some new highly prospective areas can be considered as priority areas for future exploration of concealed mineralization within the Chating Area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
43秒前
51秒前
54秒前
1分钟前
1分钟前
1分钟前
闪明火龙果完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
今后应助rebeycca采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
AliEmbark完成签到,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
抹不掉的记忆完成签到,获得积分10
4分钟前
Swear完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Endless完成签到,获得积分10
4分钟前
安详的尔岚完成签到,获得积分10
4分钟前
nenoaowu发布了新的文献求助10
4分钟前
NI完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457