3D convolutional neural Network-based 3D mineral prospectivity modeling for targeting concealed mineralization within Chating area, middle-lower Yangtze River metallogenic Belt, China

远景图 地质学 矿化(土壤科学) 长江 支持向量机 矿产勘查 卷积神经网络 地质图 地球化学 采矿工程 中国 地貌学 人工智能 计算机科学 土壤科学 构造盆地 土壤水分 政治学 法学
作者
Xiaohui Li,Xue Chen,Yuheng Chen,Yuan Feng,Yue Li,Chaojie Zheng,Mingming Zhang,Can Ge,Dong Guo,Xueyi Lan,Minhui Tang,Sanming Lu
出处
期刊:Ore Geology Reviews [Elsevier BV]
卷期号:157: 105444-105444 被引量:15
标识
DOI:10.1016/j.oregeorev.2023.105444
摘要

The Chating area is situated within the Middle-Lower Yangtze River Metallogenic Belt, China. Several concealed skarn and porphyry-type deposits have been discovered in this area, indicating high potential for hosting hydrothermal deposits. However, due to the complex geological structure, exploration risks significantly increase with increasing depth. To overcome this challenge, three-dimensional mineral prospectivity modeling (3DMPM) has begun to be widely applied for mapping the prospectivity of deep-seated and concealed mineralization. However, most previous studies on 3DMPM were based on shallow supervised machine learning models and dimensionality-reduced 3D predictive maps. Although these models have shown good results, they may lose spatial correlation within the 3D predictive maps and fail to explore nonlinear correlations between the 3D predictive maps and mineralization. Meanwhile, 3D geological models are the most important basis of the 3DMPM, however, in the past, few studies have incorporated the optimization of the 3D geological models into the process of 3DMPM. Therefore, this paper initially builds and optimizes 3D geological models through implicit 3D geological modeling and "total litho-inversion" approach. Subsequently, the 3D predictive maps are generated by employing various 3D methods, which are further integrated using a 3D convolutional neural network (3D CNN) model to identify highly prospective areas for mineralization. The results show that the highly prospective areas identified by the 3DMPM include not only the training data but also other mineral deposits that have previously been discovered within the study area. In addition, compared with the Logistic Regression model (LR), Support Vector Machines (SVM), and Radom Forest (RF), the 3D CNN performs better prediction capabilities due to its enhanced ability to capture the correlations between 3D predictive maps and multiple types of mineral deposits. It suggests that the 3DMPM based on the 3D CNN model has commendable predictive capabilities in identifying prospective mineralization areas, and some new highly prospective areas can be considered as priority areas for future exploration of concealed mineralization within the Chating Area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan完成签到,获得积分10
刚刚
打打应助小杨采纳,获得10
刚刚
zokor完成签到 ,获得积分0
1秒前
九龙飞翔完成签到,获得积分10
2秒前
yookia应助koukou采纳,获得10
2秒前
2秒前
lh发布了新的文献求助10
4秒前
阳光的雁易完成签到,获得积分10
5秒前
研友_VZG7GZ应助DamenS采纳,获得10
6秒前
CodeCraft应助DamenS采纳,获得10
6秒前
万能图书馆应助DamenS采纳,获得10
6秒前
慕青应助DamenS采纳,获得10
6秒前
顾矜应助DamenS采纳,获得10
6秒前
慕青应助DamenS采纳,获得10
6秒前
脑洞疼应助DamenS采纳,获得10
6秒前
Jasper应助DamenS采纳,获得10
6秒前
共享精神应助DamenS采纳,获得10
6秒前
wanci应助DamenS采纳,获得10
6秒前
GGGG发布了新的文献求助20
7秒前
8秒前
共享精神应助Baihanyu采纳,获得10
8秒前
忧郁豆芽发布了新的文献求助10
9秒前
10秒前
小萝卜完成签到,获得积分10
11秒前
忧郁书双完成签到,获得积分10
12秒前
研友_Ze0vBn完成签到,获得积分10
12秒前
13秒前
kunkun完成签到,获得积分10
13秒前
怡然的海瑶完成签到,获得积分10
13秒前
思源应助efls采纳,获得10
13秒前
feizhuliu完成签到,获得积分20
14秒前
落寞依珊完成签到,获得积分10
14秒前
香蕉觅云应助DamenS采纳,获得10
15秒前
顾矜应助DamenS采纳,获得10
15秒前
大模型应助DamenS采纳,获得10
15秒前
CodeCraft应助DamenS采纳,获得10
15秒前
情怀应助DamenS采纳,获得10
15秒前
汉堡包应助DamenS采纳,获得10
15秒前
彭于晏应助DamenS采纳,获得10
15秒前
无花果应助DamenS采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651