清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

3D convolutional neural Network-based 3D mineral prospectivity modeling for targeting concealed mineralization within Chating area, middle-lower Yangtze River metallogenic Belt, China

远景图 地质学 矿化(土壤科学) 长江 支持向量机 矿产勘查 卷积神经网络 地质图 地球化学 采矿工程 中国 地貌学 人工智能 计算机科学 土壤科学 构造盆地 土壤水分 政治学 法学
作者
Xiaohui Li,Xue Chen,Yuheng Chen,Yuan Feng,Yue Li,Chaojie Zheng,Mingming Zhang,Can Ge,Dong Guo,Xueyi Lan,Minhui Tang,Sanming Lu
出处
期刊:Ore Geology Reviews [Elsevier]
卷期号:157: 105444-105444 被引量:15
标识
DOI:10.1016/j.oregeorev.2023.105444
摘要

The Chating area is situated within the Middle-Lower Yangtze River Metallogenic Belt, China. Several concealed skarn and porphyry-type deposits have been discovered in this area, indicating high potential for hosting hydrothermal deposits. However, due to the complex geological structure, exploration risks significantly increase with increasing depth. To overcome this challenge, three-dimensional mineral prospectivity modeling (3DMPM) has begun to be widely applied for mapping the prospectivity of deep-seated and concealed mineralization. However, most previous studies on 3DMPM were based on shallow supervised machine learning models and dimensionality-reduced 3D predictive maps. Although these models have shown good results, they may lose spatial correlation within the 3D predictive maps and fail to explore nonlinear correlations between the 3D predictive maps and mineralization. Meanwhile, 3D geological models are the most important basis of the 3DMPM, however, in the past, few studies have incorporated the optimization of the 3D geological models into the process of 3DMPM. Therefore, this paper initially builds and optimizes 3D geological models through implicit 3D geological modeling and "total litho-inversion" approach. Subsequently, the 3D predictive maps are generated by employing various 3D methods, which are further integrated using a 3D convolutional neural network (3D CNN) model to identify highly prospective areas for mineralization. The results show that the highly prospective areas identified by the 3DMPM include not only the training data but also other mineral deposits that have previously been discovered within the study area. In addition, compared with the Logistic Regression model (LR), Support Vector Machines (SVM), and Radom Forest (RF), the 3D CNN performs better prediction capabilities due to its enhanced ability to capture the correlations between 3D predictive maps and multiple types of mineral deposits. It suggests that the 3DMPM based on the 3D CNN model has commendable predictive capabilities in identifying prospective mineralization areas, and some new highly prospective areas can be considered as priority areas for future exploration of concealed mineralization within the Chating Area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级大王完成签到 ,获得积分10
3秒前
开朗的虔完成签到 ,获得积分10
4秒前
Sylvia完成签到,获得积分10
6秒前
8秒前
秋夏山发布了新的文献求助10
12秒前
发个15分的完成签到 ,获得积分10
12秒前
chen发布了新的文献求助50
17秒前
popo完成签到 ,获得积分10
20秒前
chen发布了新的文献求助10
35秒前
赘婿应助逸云采纳,获得10
40秒前
45秒前
尹汉通完成签到,获得积分10
47秒前
ChenYX发布了新的文献求助10
49秒前
科研通AI6应助fangye采纳,获得30
1分钟前
风停了完成签到,获得积分10
1分钟前
crystaler完成签到 ,获得积分10
1分钟前
无情的匪完成签到 ,获得积分10
1分钟前
NexusExplorer应助ChenYX采纳,获得10
1分钟前
星辰大海应助more采纳,获得10
1分钟前
chen完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
eric888应助gjn采纳,获得100
1分钟前
科研通AI6应助牛牛采纳,获得10
1分钟前
秋夏山完成签到,获得积分10
1分钟前
兜有米完成签到 ,获得积分10
1分钟前
1分钟前
所所应助ddd采纳,获得10
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
渔渔完成签到 ,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
2分钟前
JrPaleo101应助tian采纳,获得30
2分钟前
more发布了新的文献求助10
2分钟前
笔墨纸砚完成签到 ,获得积分10
2分钟前
700w完成签到 ,获得积分0
2分钟前
小葡萄完成签到 ,获得积分10
2分钟前
2分钟前
小费完成签到 ,获得积分10
2分钟前
mark33442完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314970
求助须知:如何正确求助?哪些是违规求助? 4457761
关于积分的说明 13868308
捐赠科研通 4347236
什么是DOI,文献DOI怎么找? 2387650
邀请新用户注册赠送积分活动 1381784
关于科研通互助平台的介绍 1350909