Combining Bayesian active learning and conditional Gaussian process simulation for propagating mixed uncertainties through expensive computer simulators

不确定度量化 克里金 高斯过程 贝叶斯概率 计算机科学 可靠性(半导体) 机器学习 不确定性传播 人工智能 高斯分布 数据挖掘 算法 功率(物理) 物理 量子力学
作者
Jiangfeng Fu,Fangqi Hong,Pengfei Wei,Zongyi Guo,Yuannan Xu,Weikai Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:139: 108363-108363 被引量:4
标识
DOI:10.1016/j.ast.2023.108363
摘要

Resulted from the limited information on both parameters and excitation at the early design stage of aerospace structures, evaluating the reliability with high accuracy has been recognized as a challenging task. Imprecise probability models have been widely developed and accepted due to their flexibility in separating the aleatory and epistemic uncertainties, and then the potential of estimating the reliability with high confidence. However, the propagation of these models through expensive-to-evaluate simulators remains to be a challenge due to the hierarchical model structure. To fill this gap, a new Bayesian active learning method is devised for efficiently learning the functional behavior of the failure probability and response variance over the epistemic input parameters. This information is especially useful for evaluating the safety of structures and for managing the uncertainties during the design process. The proposed method is based on training/updating a Gaussian Process Regression (GPR) model in the augmented space of aleatory and epistemic parameters, with the training data actively produced using two well-designed acquisition functions. The induced posterior features of the quantities of interest are inferred numerically based on efficient simulation of the GPR model. Benefiting from the decoupling scheme and the Bayesian adaptive design strategy, the proposed method is extremely efficient and provides accuracy guarantee for the numerical results. The effectiveness and superiority of the proposed method are demonstrated with numerical and engineering benchmarks, including the dynamic reliability analysis of a satellite structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
microplastics应助科研通管家采纳,获得20
1秒前
WM应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
墨海应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
Hello应助科研通管家采纳,获得10
2秒前
microplastics应助科研通管家采纳,获得20
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
ys118完成签到 ,获得积分10
6秒前
科研通AI2S应助困困困采纳,获得10
6秒前
MargeryMay完成签到,获得积分10
7秒前
123完成签到 ,获得积分10
9秒前
AAA完成签到,获得积分10
10秒前
kevin完成签到,获得积分10
11秒前
Linda完成签到,获得积分10
12秒前
joysa完成签到,获得积分10
13秒前
科研白菜白完成签到,获得积分10
14秒前
天朗发布了新的文献求助30
16秒前
每天至少八杯水完成签到 ,获得积分10
17秒前
想吃芝士焗饭完成签到 ,获得积分10
19秒前
海与完成签到,获得积分10
20秒前
wanci应助Linda采纳,获得30
21秒前
搞怪可乐完成签到,获得积分10
21秒前
grmqgq完成签到,获得积分10
22秒前
纪富完成签到 ,获得积分10
24秒前
共享精神应助慈祥的翠桃采纳,获得10
24秒前
斯文败类应助慈祥的翠桃采纳,获得10
24秒前
竹筏过海应助慈祥的翠桃采纳,获得30
24秒前
24秒前
24秒前
欢欢欢乐乐乐乐完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242012
求助须知:如何正确求助?哪些是违规求助? 2886365
关于积分的说明 8242877
捐赠科研通 2554998
什么是DOI,文献DOI怎么找? 1383185
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417