Combining Bayesian active learning and conditional Gaussian process simulation for propagating mixed uncertainties through expensive computer simulators

不确定度量化 克里金 高斯过程 贝叶斯概率 计算机科学 可靠性(半导体) 机器学习 不确定性传播 人工智能 高斯分布 数据挖掘 算法 量子力学 物理 功率(物理)
作者
Jiangfeng Fu,Fangqi Hong,Pengfei Wei,Zongyi Guo,Yuannan Xu,Weikai Gao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:139: 108363-108363 被引量:4
标识
DOI:10.1016/j.ast.2023.108363
摘要

Resulted from the limited information on both parameters and excitation at the early design stage of aerospace structures, evaluating the reliability with high accuracy has been recognized as a challenging task. Imprecise probability models have been widely developed and accepted due to their flexibility in separating the aleatory and epistemic uncertainties, and then the potential of estimating the reliability with high confidence. However, the propagation of these models through expensive-to-evaluate simulators remains to be a challenge due to the hierarchical model structure. To fill this gap, a new Bayesian active learning method is devised for efficiently learning the functional behavior of the failure probability and response variance over the epistemic input parameters. This information is especially useful for evaluating the safety of structures and for managing the uncertainties during the design process. The proposed method is based on training/updating a Gaussian Process Regression (GPR) model in the augmented space of aleatory and epistemic parameters, with the training data actively produced using two well-designed acquisition functions. The induced posterior features of the quantities of interest are inferred numerically based on efficient simulation of the GPR model. Benefiting from the decoupling scheme and the Bayesian adaptive design strategy, the proposed method is extremely efficient and provides accuracy guarantee for the numerical results. The effectiveness and superiority of the proposed method are demonstrated with numerical and engineering benchmarks, including the dynamic reliability analysis of a satellite structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助鱼鱼色采纳,获得10
刚刚
加油加油研究研究完成签到 ,获得积分10
刚刚
1秒前
RO发布了新的文献求助10
1秒前
小蛤蟆完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
2秒前
xzh发布了新的文献求助10
3秒前
嘿嘿嘿完成签到,获得积分10
3秒前
思源应助kaiko采纳,获得10
3秒前
4秒前
4秒前
赵梦杰完成签到,获得积分10
5秒前
lukaku完成签到,获得积分10
5秒前
爱于海完成签到,获得积分10
6秒前
彭于彦祖应助欣慰的馒头采纳,获得20
6秒前
6秒前
爆米花应助好好学习采纳,获得10
6秒前
田様应助披日悬光采纳,获得10
6秒前
量子星尘发布了新的文献求助20
7秒前
脑洞疼应助星露谷老农采纳,获得30
7秒前
斯文败类应助liujia采纳,获得10
7秒前
爆米花应助Birdy采纳,获得10
8秒前
嘿嘿嘿发布了新的文献求助10
8秒前
清脆的初蝶完成签到 ,获得积分10
8秒前
17808352679发布了新的文献求助10
8秒前
8秒前
11秒前
飘逸灰狼完成签到 ,获得积分10
11秒前
七堇完成签到,获得积分10
11秒前
yyl发布了新的文献求助10
11秒前
源源发布了新的文献求助10
11秒前
谨慎三问完成签到 ,获得积分10
11秒前
12秒前
dropwater完成签到,获得积分10
12秒前
所所应助披日悬光采纳,获得10
13秒前
绿柏完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004355
求助须知:如何正确求助?哪些是违规求助? 4248536
关于积分的说明 13237242
捐赠科研通 4047837
什么是DOI,文献DOI怎么找? 2214525
邀请新用户注册赠送积分活动 1224520
关于科研通互助平台的介绍 1144998