Combining Bayesian active learning and conditional Gaussian process simulation for propagating mixed uncertainties through expensive computer simulators

不确定度量化 克里金 高斯过程 贝叶斯概率 计算机科学 可靠性(半导体) 机器学习 不确定性传播 人工智能 高斯分布 数据挖掘 算法 功率(物理) 物理 量子力学
作者
Jiangfeng Fu,Fangqi Hong,Pengfei Wei,Zongyi Guo,Yuannan Xu,Weikai Gao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:139: 108363-108363 被引量:4
标识
DOI:10.1016/j.ast.2023.108363
摘要

Resulted from the limited information on both parameters and excitation at the early design stage of aerospace structures, evaluating the reliability with high accuracy has been recognized as a challenging task. Imprecise probability models have been widely developed and accepted due to their flexibility in separating the aleatory and epistemic uncertainties, and then the potential of estimating the reliability with high confidence. However, the propagation of these models through expensive-to-evaluate simulators remains to be a challenge due to the hierarchical model structure. To fill this gap, a new Bayesian active learning method is devised for efficiently learning the functional behavior of the failure probability and response variance over the epistemic input parameters. This information is especially useful for evaluating the safety of structures and for managing the uncertainties during the design process. The proposed method is based on training/updating a Gaussian Process Regression (GPR) model in the augmented space of aleatory and epistemic parameters, with the training data actively produced using two well-designed acquisition functions. The induced posterior features of the quantities of interest are inferred numerically based on efficient simulation of the GPR model. Benefiting from the decoupling scheme and the Bayesian adaptive design strategy, the proposed method is extremely efficient and provides accuracy guarantee for the numerical results. The effectiveness and superiority of the proposed method are demonstrated with numerical and engineering benchmarks, including the dynamic reliability analysis of a satellite structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cullen完成签到 ,获得积分20
1秒前
pqy发布了新的文献求助10
1秒前
田様应助ppkdc采纳,获得10
1秒前
择一完成签到,获得积分10
1秒前
2秒前
又又完成签到,获得积分10
2秒前
zzzyyyuuu完成签到 ,获得积分10
2秒前
2秒前
3秒前
以柠发布了新的文献求助30
4秒前
无花果应助西瓜采纳,获得10
4秒前
芸沐发布了新的文献求助10
4秒前
max发布了新的文献求助10
4秒前
孙刚发布了新的文献求助10
5秒前
叮当发布了新的文献求助10
5秒前
舒心的依风完成签到,获得积分10
5秒前
专业美女制造完成签到,获得积分10
5秒前
cure发布了新的文献求助10
5秒前
5秒前
薇薇安发布了新的文献求助10
6秒前
6秒前
ZZZ完成签到,获得积分10
6秒前
禁止通行发布了新的文献求助10
6秒前
酷酷的傲之完成签到,获得积分10
7秒前
Ava应助枝江小学生采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
Clown完成签到,获得积分10
9秒前
9秒前
囿于一隅完成签到,获得积分10
10秒前
10秒前
酒笙完成签到,获得积分10
11秒前
Ava应助活泼的寄风采纳,获得10
12秒前
寒冷的世界完成签到 ,获得积分10
12秒前
行7发布了新的文献求助10
12秒前
帕尼灬尼发布了新的文献求助10
12秒前
Owen应助江边鸟采纳,获得30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635