Combining Bayesian active learning and conditional Gaussian process simulation for propagating mixed uncertainties through expensive computer simulators

不确定度量化 克里金 高斯过程 贝叶斯概率 计算机科学 可靠性(半导体) 机器学习 不确定性传播 人工智能 高斯分布 数据挖掘 算法 量子力学 物理 功率(物理)
作者
Jiangfeng Fu,Fangqi Hong,Pengfei Wei,Zongyi Guo,Yuannan Xu,Weikai Gao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:139: 108363-108363 被引量:4
标识
DOI:10.1016/j.ast.2023.108363
摘要

Resulted from the limited information on both parameters and excitation at the early design stage of aerospace structures, evaluating the reliability with high accuracy has been recognized as a challenging task. Imprecise probability models have been widely developed and accepted due to their flexibility in separating the aleatory and epistemic uncertainties, and then the potential of estimating the reliability with high confidence. However, the propagation of these models through expensive-to-evaluate simulators remains to be a challenge due to the hierarchical model structure. To fill this gap, a new Bayesian active learning method is devised for efficiently learning the functional behavior of the failure probability and response variance over the epistemic input parameters. This information is especially useful for evaluating the safety of structures and for managing the uncertainties during the design process. The proposed method is based on training/updating a Gaussian Process Regression (GPR) model in the augmented space of aleatory and epistemic parameters, with the training data actively produced using two well-designed acquisition functions. The induced posterior features of the quantities of interest are inferred numerically based on efficient simulation of the GPR model. Benefiting from the decoupling scheme and the Bayesian adaptive design strategy, the proposed method is extremely efficient and provides accuracy guarantee for the numerical results. The effectiveness and superiority of the proposed method are demonstrated with numerical and engineering benchmarks, including the dynamic reliability analysis of a satellite structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小毕可乐发布了新的文献求助10
刚刚
SciGPT应助老闭比基尼采纳,获得10
刚刚
小二郎应助瑶瑶采纳,获得10
1秒前
1秒前
科研通AI2S应助伽娜采纳,获得10
2秒前
彭于晏应助LIUS采纳,获得10
2秒前
传奇3应助xiayiyi采纳,获得10
2秒前
喜悦的无心完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
平常的仙人掌完成签到,获得积分10
3秒前
西林发布了新的文献求助10
4秒前
申左一发布了新的文献求助10
4秒前
阅读发布了新的文献求助10
4秒前
5秒前
5秒前
昵称应助ChengxinXie采纳,获得20
5秒前
6秒前
万能图书馆应助才地理采纳,获得10
6秒前
7秒前
7秒前
壮壮女士发布了新的文献求助10
7秒前
LIUS完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
梅花完成签到,获得积分10
10秒前
10秒前
十一号发布了新的文献求助10
10秒前
祝你发财完成签到,获得积分20
10秒前
万事顺意发布了新的文献求助10
11秒前
12秒前
少少发布了新的文献求助10
12秒前
文艺路人发布了新的文献求助10
12秒前
酷波er应助kkk采纳,获得10
12秒前
幽梦挽歌发布了新的文献求助10
13秒前
单身的淇发布了新的文献求助10
13秒前
sunnyfriend完成签到,获得积分10
13秒前
伽娜发布了新的文献求助10
14秒前
xiayiyi发布了新的文献求助10
14秒前
领导范儿应助Jessica采纳,获得10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559