Lyophilization scale-up to industrial manufacturing: A modeling framework including probabilistic success prediction

比例(比率) 概率逻辑 医药制造业 过程(计算) 可靠性工程 工业工程 制造工程 放大 统计模型 工程类 工艺工程 计算机科学 人工智能 机器学习 操作系统 生物 经典力学 物理 量子力学 生物信息学
作者
Petr Kazarin,Gayathri Shivkumar,Ted Tharp,Alina Alexeenko,Sherwin Shang
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:192: 441-455 被引量:3
标识
DOI:10.1016/j.cherd.2023.02.044
摘要

Scaling-up a lyophilization cycle to the manufacturing scale successfully at the first pass is of crucial importance to the bio-pharmaceutical community in order to save expensive and sparsely available drug products for clinical and industrial manufacturing. The constraints on time, cost and energy consumption during process development are prohibitive to performing multiple experimental studies at the manufacturing scale. Most process analytical techniques to obtain cycle data are often not available at the manufacturing scale due to sterility concerns with intrusive tools and experimental uncertainties at industrial manufacturing scales. Modeling techniques offer an attractive alternative solution under these circumstances to gain knowledge about the manufacturing scale equipment limitations and predict the probability of success prior to performing experimental trials in order to minimize the risk associated with scale-up. In this paper, we present a detailed characterization of equipment capability curves for lyophilizers across laboratory, pilot and manufacturing scales using Computational Fluid Dynamics (CFD) modeling and highlight the flow features in manufacturing-scale equipment with different geometric attributes. We present the equipment, process and product parameters which determine the outcome of the cycle and develop guidelines for robust scale-up practices from the laboratory and pilot scales to the manufacturing scale using vial heat and mass transfer modeling. We present examples of cycles which would seem to scale-up to the manufacturing-scale successfully using a deterministic model but would have a high probability of failure when process excursions, deviations, and input uncertainties are accounted for by applying a Monte-Carlo based probabilistic model. We demonstrate the method to reduce the failure probability and de-risk the scale-up of such processes. We also present the significant reduction in primary drying time that can be achieved by implementing a lyophilization recipe with varying setpoints of chamber pressure and shelf temperature for the primary drying stage in a manufacturing-scale lyophilizer. All the observations from our modeling analyses and example studies indicate that CFD simulations in combination with deterministic and Monte-Carlo based probabilistic vial heat and mass transfer modeling would significantly improve the success of scale-up to industrial lyophilized drug manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助科研小白采纳,获得10
1秒前
温曈发布了新的文献求助10
1秒前
whiteside完成签到,获得积分10
1秒前
良陈美景奈何天完成签到 ,获得积分10
2秒前
lbhanc完成签到,获得积分10
3秒前
123456789发布了新的文献求助10
3秒前
苦呀发布了新的文献求助30
3秒前
3秒前
小时发布了新的文献求助10
4秒前
烟花应助Jisong采纳,获得10
4秒前
隐形曼青应助123采纳,获得10
4秒前
mei完成签到,获得积分10
4秒前
4秒前
5秒前
优秀小甜瓜完成签到,获得积分10
6秒前
科研通AI5应助tsunami采纳,获得10
6秒前
6秒前
6秒前
peace发布了新的文献求助10
6秒前
赘婿应助TobyGarfielD采纳,获得10
7秒前
方源发布了新的文献求助10
7秒前
7秒前
Chenjunxian完成签到,获得积分10
7秒前
jiaxiang发布了新的文献求助10
8秒前
烟花应助正常采纳,获得10
8秒前
8秒前
加满都完成签到,获得积分20
8秒前
heqin完成签到,获得积分10
8秒前
崔铭哲完成签到,获得积分10
8秒前
科研通AI6应助stay采纳,获得10
9秒前
科研通AI5应助甜蜜老太采纳,获得10
9秒前
PLA发布了新的文献求助10
9秒前
冷静的高烽完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
Chenjunxian发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352