Lyophilization scale-up to industrial manufacturing: A modeling framework including probabilistic success prediction

比例(比率) 概率逻辑 医药制造业 过程(计算) 可靠性工程 工业工程 制造工程 放大 统计模型 工程类 工艺工程 计算机科学 人工智能 机器学习 操作系统 生物 经典力学 物理 量子力学 生物信息学
作者
Petr Kazarin,Gayathri Shivkumar,Ted Tharp,Alina Alexeenko,Sherwin Shang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:192: 441-455 被引量:2
标识
DOI:10.1016/j.cherd.2023.02.044
摘要

Scaling-up a lyophilization cycle to the manufacturing scale successfully at the first pass is of crucial importance to the bio-pharmaceutical community in order to save expensive and sparsely available drug products for clinical and industrial manufacturing. The constraints on time, cost and energy consumption during process development are prohibitive to performing multiple experimental studies at the manufacturing scale. Most process analytical techniques to obtain cycle data are often not available at the manufacturing scale due to sterility concerns with intrusive tools and experimental uncertainties at industrial manufacturing scales. Modeling techniques offer an attractive alternative solution under these circumstances to gain knowledge about the manufacturing scale equipment limitations and predict the probability of success prior to performing experimental trials in order to minimize the risk associated with scale-up. In this paper, we present a detailed characterization of equipment capability curves for lyophilizers across laboratory, pilot and manufacturing scales using Computational Fluid Dynamics (CFD) modeling and highlight the flow features in manufacturing-scale equipment with different geometric attributes. We present the equipment, process and product parameters which determine the outcome of the cycle and develop guidelines for robust scale-up practices from the laboratory and pilot scales to the manufacturing scale using vial heat and mass transfer modeling. We present examples of cycles which would seem to scale-up to the manufacturing-scale successfully using a deterministic model but would have a high probability of failure when process excursions, deviations, and input uncertainties are accounted for by applying a Monte-Carlo based probabilistic model. We demonstrate the method to reduce the failure probability and de-risk the scale-up of such processes. We also present the significant reduction in primary drying time that can be achieved by implementing a lyophilization recipe with varying setpoints of chamber pressure and shelf temperature for the primary drying stage in a manufacturing-scale lyophilizer. All the observations from our modeling analyses and example studies indicate that CFD simulations in combination with deterministic and Monte-Carlo based probabilistic vial heat and mass transfer modeling would significantly improve the success of scale-up to industrial lyophilized drug manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjsss完成签到,获得积分10
2秒前
科研通AI5应助妮妮采纳,获得10
2秒前
2秒前
123发布了新的文献求助10
3秒前
3秒前
4秒前
advance完成签到,获得积分10
4秒前
agnehc应助虾虾大王采纳,获得10
4秒前
鱼鱼子999完成签到,获得积分10
4秒前
科目三应助海森堡采纳,获得10
5秒前
Yan发布了新的文献求助10
6秒前
烟花应助时尚平文采纳,获得10
7秒前
111发布了新的文献求助10
7秒前
传奇3应助健忘梦寒采纳,获得10
9秒前
haunge发布了新的文献求助10
9秒前
10秒前
大爱炫炫完成签到,获得积分10
10秒前
复杂煎饼完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
11秒前
dd完成签到 ,获得积分10
13秒前
CipherSage应助444采纳,获得10
13秒前
彳亍1117应助444采纳,获得10
13秒前
科研通AI5应助炙心采纳,获得10
14秒前
科研通AI5应助务实的傲安采纳,获得10
15秒前
pluto应助Keylor采纳,获得10
15秒前
梦梦完成签到,获得积分10
16秒前
TCB发布了新的文献求助10
16秒前
16秒前
充电宝应助Yan采纳,获得10
18秒前
18秒前
科研通AI5应助haunge采纳,获得10
18秒前
18秒前
潦草发布了新的文献求助10
18秒前
初识应助陶醉信封采纳,获得10
19秒前
科研通AI5应助余梦娇采纳,获得10
19秒前
19秒前
sandra完成签到 ,获得积分10
21秒前
ding应助OK采纳,获得10
21秒前
欢喜笑槐发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084