地方政府
脑电图
计算机科学
人工智能
模式识别(心理学)
神经科学
心理学
作者
Haili Wang,Ning Yin,Guizhi Xu
出处
期刊:PubMed
日期:2023-02-25
卷期号:40 (1): 163-170
标识
DOI:10.7507/1001-5515.202206007
摘要
Electroencephalogram (EEG) is characterized by high temporal resolution, and various EEG analysis methods have developed rapidly in recent years. The EEG microstate analysis method can be used to study the changes of the brain in the millisecond scale, and can also present the distribution of EEG signals in the topological level, thus reflecting the discontinuous and nonlinear characteristics of the whole brain. After more than 30 years of enrichment and improvement, EEG microstate analysis has penetrated into many research fields related to brain science. In this paper, the basic principles of EEG microstate analysis methods are summarized, and the changes of characteristic parameters of microstates, the relationship between microstates and brain functional networks as well as the main advances in the application of microstate feature extraction and classification in brain diseases and brain cognition are systematically described, hoping to provide some references for researchers in this field.脑电信号具有高时间分辨率的特征,各类脑电信号分析方法近年来发展迅速。脑电微状态分析方法能够研究毫秒级范围内的大脑变化,同时也可呈现脑电信号在拓扑层面上的分布,从而反映全脑的不连续和非线性特征。经历三十多年的丰富和完善,脑电微状态分析已经渗透到脑科学相关的多个研究领域。本文总结了脑电微状态分析方法的基本原理,系统阐述了微状态特征参数改变、微状态与脑功能网络的关系以及微状态特征提取与分类在脑疾病和脑认知方面的主要应用进展,期望能够为该领域的研究人员提供一定的参考。.
科研通智能强力驱动
Strongly Powered by AbleSci AI