Intelligent Resource Allocation for Edge-Cloud Collaborative Networks: A Hybrid DDPG-D3QN Approach

云计算 计算机科学 计算卸载 分布式计算 强化学习 边缘计算 服务器 数学优化 能源消耗 GSM演进的增强数据速率 计算机网络 工程类 人工智能 数学 电气工程 操作系统
作者
Han Hu,Dingguo Wu,Fuhui Zhou,Xiaolei Zhu,Rose Qingyang Hu,Hongbo Zhu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (8): 10696-10709 被引量:13
标识
DOI:10.1109/tvt.2023.3253905
摘要

To handle the ever-increasing IoT devices with computation-intensive and delay-critical applications, it is imperative to leverage the collaborative potential of edge and cloud computing. In this paper, we investigate the dynamic offloading of packets with finite block length (FBL) in an edge-cloud collaboration system consisting of multi-mobile IoT devices (MIDs) with energy harvesting (EH), multi-edge servers, and one cloud server (CS) in a dynamic environment. The optimization problem is formulated to minimize the average long-term service cost defined as the weighted sum of MID energy consumption and service delay, with the constraints of the available resource, the energy causality, the allowable service delay, and the maximum decoding error probability. To address the problem involving both discrete and continuous variables, we propose a multi-device hybrid decision-based deep reinforcement learning (DRL) solution, named DDPG-D3QN algorithm, where the deep deterministic policy gradient (DDPG) and dueling double deep Q networks (D3QN) are invoked to tackle continuous and discrete action domains, respectively. Specifically, we improve the actor-critic structure of DDPG by combining D3QN. It utilizes the actor part of DDPG to search for the optimal offloading rate and power control of local execution. Meanwhile, it combines the critic part of DDPG with D3QN to select the optimal server for offloading. Simulation results demonstrate the proposed DDPG-D3QN algorithm has better stability and faster convergence, while achieving higher rewards than the existing DRL-based methods. Furthermore, the edge-cloud collaboration approach outperforms non-collaborative schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi发布了新的文献求助10
刚刚
呆呆完成签到,获得积分10
1秒前
blebui应助姜茶采纳,获得10
1秒前
幼稚园小新完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
2秒前
snowball完成签到,获得积分10
2秒前
3秒前
duoduozs发布了新的文献求助10
3秒前
velpro完成签到,获得积分10
3秒前
qqqq完成签到,获得积分10
3秒前
4秒前
4秒前
溪风完成签到,获得积分10
4秒前
ting发布了新的文献求助10
5秒前
6秒前
Xxxnnian发布了新的文献求助30
6秒前
听风暖完成签到 ,获得积分10
7秒前
li发布了新的文献求助10
7秒前
赘婿应助伊布采纳,获得10
7秒前
gaga完成签到,获得积分10
7秒前
小蘑菇应助reck采纳,获得10
8秒前
清风荷影完成签到 ,获得积分10
8秒前
酷波er应助动如脱兔采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
圈圈发布了新的文献求助10
10秒前
易达发布了新的文献求助10
10秒前
追梦人完成签到,获得积分10
10秒前
10秒前
实验室扛把子完成签到,获得积分10
10秒前
在水一方应助清爽忆山采纳,获得10
11秒前
小马甲应助日月山河永在采纳,获得10
11秒前
娃娃发布了新的文献求助10
12秒前
12秒前
任医生发布了新的文献求助10
12秒前
冷眼观潮完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672