Optimal design of γʹ-strengthened high-entropy alloys via machine learning multilayer structural model

高熵合金 材料科学 体积分数 微观结构 熵(时间箭头) 相(物质) 机械工程 热力学 冶金 复合材料 工程类 物理 化学 有机化学
作者
Weijie Liu,Chenglei Wang,Chaojie Liang,Junfeng Chen,Hong‐Wei Tan,Jijie Yang,Mulin Liang,Xin Li,Chong Liu,Mei Huang,Xingjun Liu
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:871: 144852-144852 被引量:9
标识
DOI:10.1016/j.msea.2023.144852
摘要

γʹ-strengthened high-entropy alloys (HEAs) have been widely studied in recent years because of their excellent mechanical properties at room- and elevated-temperature. The element diversity of HEAs leads to its vast composition and preparation process space and accelerating the design of γʹ-strengthened HEAs by determining phase and mechanical properties remains a prominent challenge. In this study, by building a multi-layer structure prediction model, which includes accurate prediction models of microstructure and mechanical property, aiming to find HEAs with γʹ phase high-volume fraction and high strength. Four γʹ-strengthened alloys were selected from 800,000 candidate alloys by the multilayer structural prediction model, and then it was verified that all four HEAs have a high γʹ phase volume fraction and high strength by experiment. Furthermore, the mathematical relationship between the different metal elements, heat treatment processes, and γ′ phase volume fraction by resolving the machine learning model with the shapely additive algorithm (SHAP). A mathematical relationship model for the strengthening mechanism of HEAs was established to analyze the strengthening relationship of different strengthening mechanisms. The multilayer structural model can be used for the efficient design of γʹ-strengthened high-entropy alloys, and analyze multiple potential relationships that influence the properties of alloys through the underlying data of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang发布了新的文献求助10
1秒前
Rondab应助飞云采纳,获得10
7秒前
慕青应助么大人采纳,获得10
7秒前
8秒前
10秒前
燕子发布了新的文献求助30
10秒前
11秒前
yi完成签到,获得积分10
12秒前
13秒前
害羞的囧完成签到 ,获得积分10
13秒前
NMR完成签到,获得积分10
15秒前
wanwan发布了新的文献求助10
15秒前
Z17完成签到,获得积分10
15秒前
chrysan发布了新的文献求助10
17秒前
Z17发布了新的文献求助10
18秒前
大不里士发布了新的文献求助50
19秒前
Exc完成签到,获得积分0
19秒前
Caddie完成签到,获得积分10
21秒前
华风完成签到,获得积分10
22秒前
22秒前
潜水的方舟完成签到,获得积分10
24秒前
25秒前
27秒前
31秒前
合适怜南完成签到,获得积分10
33秒前
37秒前
luoyujia发布了新的文献求助10
39秒前
三分发布了新的文献求助10
42秒前
D1fficulty完成签到,获得积分10
43秒前
一二完成签到,获得积分10
44秒前
至幸发布了新的文献求助10
48秒前
48秒前
欧气青年完成签到,获得积分10
49秒前
wanci应助棕榈采纳,获得10
49秒前
李健应助科研通管家采纳,获得10
49秒前
hhhi应助科研通管家采纳,获得10
49秒前
坦率的匪应助科研通管家采纳,获得10
50秒前
慕青应助科研通管家采纳,获得10
50秒前
田様应助科研通管家采纳,获得10
50秒前
大模型应助科研通管家采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975