Contrastive Learning Based Graph Convolution Network for Social Recommendation

计算机科学 图形 利用 理论计算机科学 推荐系统 人工智能 特征学习 粒度 机器学习 自然语言处理 计算机安全 操作系统
作者
Jiabo Zhuang,Shunmei Meng,Jing Zhang,Victor S. Sheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (8): 1-21 被引量:6
标识
DOI:10.1145/3587268
摘要

Exploiting social networks is expected to enhance the performance of recommender systems when interaction information is sparse. Existing social recommendation models focus on modeling multi-graph structures and then aggregating the information from these multiple graphs to learn potential user preferences. However, these methods often employ complex models and redundant parameters to get a slight performance improvement. Contrastive learning has been widely researched as an effective paradigm in the area of recommendation. Most existing contrastive learning-based models usually focus on constructing multi-graph structures to perform graph augmentation for contrastive learning. However, the effect of graph augmentation on contrastive learning is inconclusive. In view of these challenges, in this work, we propose a contrastive learning based graph convolution network for social recommendation (CLSR), which integrates information from both the social graph and the interaction graph. First, we propose a fusion-simplified method to combine the social graph and the interaction graph. Technically, on the basis of exploring users’ interests by interaction graph, we further exploit social connections to alleviate data sparsity. By combining the user embeddings learned through two graphs in a certain proportion, we can obtain user representation at a finer granularity. Meanwhile, we introduce a contrastive learning framework for multi-graph network modeling, where we explore the feasibility of constructing positive and negative samples of contrastive learning by conducting data augmentation on embedding representations. Extensive experiments verify the superiority of CLSR’s contrastive learning framework and fusion-simplified method of integrating social relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研小白采纳,获得30
2秒前
科目三应助简单的可愁采纳,获得10
3秒前
可爱的函函应助cumtxzs采纳,获得10
4秒前
BallQ完成签到,获得积分10
5秒前
ding应助十七采纳,获得10
7秒前
8秒前
9秒前
云轻完成签到 ,获得积分10
9秒前
10秒前
科研通AI2S应助wang5945采纳,获得10
10秒前
烟花应助妞妞采纳,获得10
11秒前
11秒前
坚强的皮皮虾完成签到,获得积分10
11秒前
yaoyao110完成签到,获得积分10
11秒前
情怀应助franca2005采纳,获得10
12秒前
我要发sci完成签到,获得积分10
12秒前
12秒前
搜集达人应助butiflow采纳,获得10
13秒前
海上聆风完成签到 ,获得积分20
14秒前
Bagpipe完成签到 ,获得积分10
14秒前
15秒前
科研小白发布了新的文献求助30
16秒前
wtfff发布了新的文献求助10
16秒前
17秒前
rendong4009发布了新的文献求助10
17秒前
执着的大象完成签到,获得积分10
18秒前
一年八篇sci完成签到,获得积分20
18秒前
晚意完成签到,获得积分10
19秒前
望十五月完成签到,获得积分10
19秒前
19秒前
打打应助yin采纳,获得10
20秒前
21秒前
一只虎子完成签到,获得积分10
21秒前
多多给多多的求助进行了留言
22秒前
Cathy完成签到,获得积分10
22秒前
简单微笑关注了科研通微信公众号
22秒前
23秒前
戏言121完成签到,获得积分10
24秒前
bxxxxx完成签到,获得积分10
24秒前
24秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122658
求助须知:如何正确求助?哪些是违规求助? 2773077
关于积分的说明 7716550
捐赠科研通 2428645
什么是DOI,文献DOI怎么找? 1289889
科研通“疑难数据库(出版商)”最低求助积分说明 621635
版权声明 600185