Contrastive Learning Based Graph Convolution Network for Social Recommendation

计算机科学 图形 利用 理论计算机科学 推荐系统 人工智能 特征学习 粒度 机器学习 自然语言处理 计算机安全 操作系统
作者
Jiabo Zhuang,Shunmei Meng,Jing Zhang,Victor S. Sheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (8): 1-21 被引量:8
标识
DOI:10.1145/3587268
摘要

Exploiting social networks is expected to enhance the performance of recommender systems when interaction information is sparse. Existing social recommendation models focus on modeling multi-graph structures and then aggregating the information from these multiple graphs to learn potential user preferences. However, these methods often employ complex models and redundant parameters to get a slight performance improvement. Contrastive learning has been widely researched as an effective paradigm in the area of recommendation. Most existing contrastive learning-based models usually focus on constructing multi-graph structures to perform graph augmentation for contrastive learning. However, the effect of graph augmentation on contrastive learning is inconclusive. In view of these challenges, in this work, we propose a contrastive learning based graph convolution network for social recommendation (CLSR), which integrates information from both the social graph and the interaction graph. First, we propose a fusion-simplified method to combine the social graph and the interaction graph. Technically, on the basis of exploring users’ interests by interaction graph, we further exploit social connections to alleviate data sparsity. By combining the user embeddings learned through two graphs in a certain proportion, we can obtain user representation at a finer granularity. Meanwhile, we introduce a contrastive learning framework for multi-graph network modeling, where we explore the feasibility of constructing positive and negative samples of contrastive learning by conducting data augmentation on embedding representations. Extensive experiments verify the superiority of CLSR’s contrastive learning framework and fusion-simplified method of integrating social relations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助舒服的士萧采纳,获得10
刚刚
ning完成签到 ,获得积分10
刚刚
无花果应助花飞飞凡采纳,获得10
刚刚
久燊完成签到,获得积分20
1秒前
3秒前
tengfei完成签到,获得积分10
3秒前
3秒前
DDDD发布了新的文献求助10
5秒前
陆程文完成签到,获得积分10
5秒前
5秒前
霞俊杰完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
Awei完成签到,获得积分10
6秒前
天天快乐应助牛贝贝采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
BowieHuang应助Ymir采纳,获得40
8秒前
8秒前
NexusExplorer应助1101592875采纳,获得10
8秒前
付研琪发布了新的文献求助10
8秒前
花灯王子完成签到,获得积分10
9秒前
Lqian_Yu完成签到 ,获得积分10
9秒前
小葛发布了新的文献求助10
9秒前
Kevin发布了新的文献求助20
10秒前
lzx完成签到,获得积分10
10秒前
ZIS发布了新的文献求助10
10秒前
吴帅发布了新的文献求助10
10秒前
10秒前
10秒前
keyanrubbish发布了新的文献求助10
10秒前
tangshijun完成签到,获得积分10
11秒前
11秒前
11秒前
子车茗应助sober采纳,获得20
11秒前
11秒前
无疾而终完成签到,获得积分10
11秒前
Tdj完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836