Contrastive Learning Based Graph Convolution Network for Social Recommendation

计算机科学 图形 利用 理论计算机科学 推荐系统 人工智能 特征学习 粒度 机器学习 自然语言处理 计算机安全 操作系统
作者
Jiabo Zhuang,Shunmei Meng,Jing Zhang,Victor S. Sheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (8): 1-21 被引量:8
标识
DOI:10.1145/3587268
摘要

Exploiting social networks is expected to enhance the performance of recommender systems when interaction information is sparse. Existing social recommendation models focus on modeling multi-graph structures and then aggregating the information from these multiple graphs to learn potential user preferences. However, these methods often employ complex models and redundant parameters to get a slight performance improvement. Contrastive learning has been widely researched as an effective paradigm in the area of recommendation. Most existing contrastive learning-based models usually focus on constructing multi-graph structures to perform graph augmentation for contrastive learning. However, the effect of graph augmentation on contrastive learning is inconclusive. In view of these challenges, in this work, we propose a contrastive learning based graph convolution network for social recommendation (CLSR), which integrates information from both the social graph and the interaction graph. First, we propose a fusion-simplified method to combine the social graph and the interaction graph. Technically, on the basis of exploring users’ interests by interaction graph, we further exploit social connections to alleviate data sparsity. By combining the user embeddings learned through two graphs in a certain proportion, we can obtain user representation at a finer granularity. Meanwhile, we introduce a contrastive learning framework for multi-graph network modeling, where we explore the feasibility of constructing positive and negative samples of contrastive learning by conducting data augmentation on embedding representations. Extensive experiments verify the superiority of CLSR’s contrastive learning framework and fusion-simplified method of integrating social relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
杨茗涵完成签到,获得积分10
3秒前
酷酷芷蕾发布了新的文献求助10
7秒前
俏皮诺言发布了新的文献求助10
8秒前
李健应助勤奋的科研小白采纳,获得10
8秒前
8秒前
9秒前
尘曦完成签到,获得积分10
10秒前
李爱国应助hbhbj采纳,获得10
10秒前
酷波er应助LIU采纳,获得10
12秒前
永梦双星应助Dr大壮采纳,获得10
12秒前
13秒前
尤珩完成签到,获得积分10
13秒前
14秒前
桐桐应助方大采纳,获得10
15秒前
16秒前
Estella完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
汉堡包应助坤坤大白采纳,获得10
22秒前
22秒前
知画春秋完成签到 ,获得积分10
23秒前
齐天大圣完成签到,获得积分10
25秒前
LIU发布了新的文献求助10
25秒前
25秒前
华仔应助优美晓灵采纳,获得10
26秒前
P88JNG发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
29秒前
感动的嚓茶完成签到,获得积分10
29秒前
害怕的过客完成签到,获得积分10
31秒前
可爱的函函应助周涨杰采纳,获得100
31秒前
希望天下0贩的0应助77采纳,获得10
32秒前
32秒前
852应助忧郁凌波采纳,获得10
32秒前
李爱国应助21世纪活化石采纳,获得10
33秒前
orixero应助江夏采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457902
求助须知:如何正确求助?哪些是违规求助? 4564070
关于积分的说明 14293488
捐赠科研通 4488860
什么是DOI,文献DOI怎么找? 2458773
邀请新用户注册赠送积分活动 1448706
关于科研通互助平台的介绍 1424355