清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review

机器学习 计算机科学 可穿戴计算机 人工智能 压力源 可穿戴技术 神经科学 嵌入式系统 心理学
作者
Gideon Vos,Kelly Trinh,Zoltán Sarnyai,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:173: 105026-105026 被引量:8
标识
DOI:10.1016/j.ijmedinf.2023.105026
摘要

Wearable sensors have shown promise as a non-intrusive method for collecting biomarkers that may correlate with levels of elevated stress. Stressors cause a variety of biological responses, and these physiological reactions can be measured using biomarkers including Heart Rate Variability (HRV), Electrodermal Activity (EDA) and Heart Rate (HR) that represent the stress response from the Hypothalamic-Pituitary-Adrenal (HPA) axis, the Autonomic Nervous System (ANS), and the immune system. While Cortisol response magnitude remains the gold standard indicator for stress assessment [1], recent advances in wearable technologies have resulted in the availability of a number of consumer devices capable of recording HRV, EDA and HR sensor biomarkers, amongst other signals. At the same time, researchers have been applying machine learning techniques to the recorded biomarkers in order to build models that may be able to predict elevated levels of stress.The aim of this review is to provide an overview of machine learning techniques utilized in prior research with a specific focus on model generalization when using these public datasets as training data. We also shed light on the challenges and opportunities that machine learning-enabled stress monitoring and detection face.This study reviewed published works contributing and/or using public datasets designed for detecting stress and their associated machine learning methods. The electronic databases of Google Scholar, Crossref, DOAJ and PubMed were searched for relevant articles and a total of 33 articles were identified and included in the final analysis. The reviewed works were synthesized into three categories of publicly available stress datasets, machine learning techniques applied using those, and future research directions. For the machine learning studies reviewed, we provide an analysis of their approach to results validation and model generalization. The quality assessment of the included studies was conducted in accordance with the IJMEDI checklist [2].A number of public datasets were identified that are labeled for stress detection. These datasets were most commonly produced from sensor biomarker data recorded using the Empatica E4 device, a well-studied, medical-grade wrist-worn wearable that provides sensor biomarkers most notable to correlate with elevated levels of stress. Most of the reviewed datasets contain less than twenty-four hours of data, and the varied experimental conditions and labeling methodologies potentially limit their ability to generalize for unseen data. In addition, we discuss that previous works show shortcomings in areas such as their labeling protocols, lack of statistical power, validity of stress biomarkers, and model generalization ability.Health tracking and monitoring using wearable devices is growing in popularity, while the generalization of existing machine learning models still requires further study, and research in this area will continue to provide improvements as newer and more substantial datasets become available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
carrot完成签到 ,获得积分10
12秒前
摆渡人发布了新的文献求助10
15秒前
摆渡人完成签到,获得积分10
22秒前
焚心结完成签到 ,获得积分10
23秒前
shikaly完成签到,获得积分10
35秒前
阳炎完成签到,获得积分10
37秒前
追寻的冬寒完成签到 ,获得积分10
45秒前
bluelemon完成签到,获得积分10
49秒前
嘿嘿完成签到 ,获得积分10
56秒前
xixi很困完成签到 ,获得积分10
1分钟前
uikymh完成签到 ,获得积分0
1分钟前
lkk183完成签到 ,获得积分10
1分钟前
amar完成签到 ,获得积分0
1分钟前
1分钟前
migi应助科研通管家采纳,获得10
1分钟前
FashionBoy应助耍酷秋采纳,获得10
1分钟前
arsenal完成签到 ,获得积分10
1分钟前
doreen完成签到 ,获得积分10
2分钟前
ktw完成签到,获得积分10
2分钟前
欢呼的茗茗完成签到 ,获得积分10
2分钟前
光亮的自行车完成签到 ,获得积分10
2分钟前
Amikacin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
SciGPT应助爱科研爱生活采纳,获得10
2分钟前
爱科研爱生活完成签到,获得积分10
3分钟前
z123123发布了新的文献求助50
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
LIU发布了新的文献求助10
3分钟前
新奇完成签到 ,获得积分10
3分钟前
Arthur完成签到 ,获得积分10
3分钟前
3分钟前
adeno完成签到,获得积分10
3分钟前
adeno发布了新的文献求助10
3分钟前
LIU完成签到,获得积分10
4分钟前
搜集达人应助古炮采纳,获得10
4分钟前
tmrrrrrr完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3077789
求助须知:如何正确求助?哪些是违规求助? 2730613
关于积分的说明 7513270
捐赠科研通 2378856
什么是DOI,文献DOI怎么找? 1261476
科研通“疑难数据库(出版商)”最低求助积分说明 611552
版权声明 597315