已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review

机器学习 计算机科学 可穿戴计算机 人工智能 压力源 可穿戴技术 神经科学 嵌入式系统 心理学
作者
Gideon Vos,Kelly Trinh,Zoltán Sarnyai,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:173: 105026-105026 被引量:60
标识
DOI:10.1016/j.ijmedinf.2023.105026
摘要

Wearable sensors have shown promise as a non-intrusive method for collecting biomarkers that may correlate with levels of elevated stress. Stressors cause a variety of biological responses, and these physiological reactions can be measured using biomarkers including Heart Rate Variability (HRV), Electrodermal Activity (EDA) and Heart Rate (HR) that represent the stress response from the Hypothalamic-Pituitary-Adrenal (HPA) axis, the Autonomic Nervous System (ANS), and the immune system. While Cortisol response magnitude remains the gold standard indicator for stress assessment [1], recent advances in wearable technologies have resulted in the availability of a number of consumer devices capable of recording HRV, EDA and HR sensor biomarkers, amongst other signals. At the same time, researchers have been applying machine learning techniques to the recorded biomarkers in order to build models that may be able to predict elevated levels of stress.The aim of this review is to provide an overview of machine learning techniques utilized in prior research with a specific focus on model generalization when using these public datasets as training data. We also shed light on the challenges and opportunities that machine learning-enabled stress monitoring and detection face.This study reviewed published works contributing and/or using public datasets designed for detecting stress and their associated machine learning methods. The electronic databases of Google Scholar, Crossref, DOAJ and PubMed were searched for relevant articles and a total of 33 articles were identified and included in the final analysis. The reviewed works were synthesized into three categories of publicly available stress datasets, machine learning techniques applied using those, and future research directions. For the machine learning studies reviewed, we provide an analysis of their approach to results validation and model generalization. The quality assessment of the included studies was conducted in accordance with the IJMEDI checklist [2].A number of public datasets were identified that are labeled for stress detection. These datasets were most commonly produced from sensor biomarker data recorded using the Empatica E4 device, a well-studied, medical-grade wrist-worn wearable that provides sensor biomarkers most notable to correlate with elevated levels of stress. Most of the reviewed datasets contain less than twenty-four hours of data, and the varied experimental conditions and labeling methodologies potentially limit their ability to generalize for unseen data. In addition, we discuss that previous works show shortcomings in areas such as their labeling protocols, lack of statistical power, validity of stress biomarkers, and model generalization ability.Health tracking and monitoring using wearable devices is growing in popularity, while the generalization of existing machine learning models still requires further study, and research in this area will continue to provide improvements as newer and more substantial datasets become available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的幻灵完成签到,获得积分10
2秒前
lijunliang完成签到 ,获得积分10
2秒前
七号在野闪闪完成签到 ,获得积分10
3秒前
rayc应助卡皮巴拉桑采纳,获得10
3秒前
所所应助实物图采纳,获得10
4秒前
晨晨完成签到 ,获得积分10
4秒前
Carole完成签到 ,获得积分10
5秒前
Akim应助雅士白农学家采纳,获得10
5秒前
韦鑫龙完成签到,获得积分10
5秒前
5秒前
半斤完成签到 ,获得积分10
6秒前
8秒前
nav完成签到 ,获得积分10
8秒前
Tohka完成签到 ,获得积分10
8秒前
RRR232完成签到 ,获得积分10
8秒前
9秒前
大方听白完成签到 ,获得积分10
9秒前
123完成签到 ,获得积分10
11秒前
聪聪great发布了新的文献求助10
12秒前
01259完成签到 ,获得积分10
13秒前
嘁嘁嘁发布了新的文献求助10
13秒前
14秒前
azon完成签到 ,获得积分10
15秒前
韦老虎完成签到,获得积分20
16秒前
聪聪great完成签到,获得积分20
16秒前
17秒前
徐zhipei完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
Criminology34应助HH采纳,获得10
19秒前
神奇五子棋完成签到 ,获得积分10
19秒前
19秒前
敏感的博超完成签到 ,获得积分10
20秒前
Owen应助清秀小霸王采纳,获得10
20秒前
Left发布了新的文献求助10
20秒前
聪明萤完成签到 ,获得积分10
21秒前
实物图发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504