A Refinement Boosted and Attention Guided Deep FISTA Reconstruction Framework for Compressive Spectral Imaging

高光谱成像 计算机科学 人工智能 深度学习 可解释性 迭代重建 模式识别(心理学) 压缩传感
作者
Ping Xu,Lei Liu,Yuewei Jia,Haifeng Zheng,Chen Xu,Ping Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:1
标识
DOI:10.1109/tgrs.2023.3257125
摘要

Hyperspectral images (HSIs) contain rich spatial and spectral information. A double dispersers coded aperture snapshot spectral imaging (DD-CASSI) system takes advantage of compressive sensing (CS) theory to map 3D HSI data into a single 2D measurement. One of key components of DD-CASSI is to reconstruct high quality hyperspectral image from measurement. Traditional model-based methods use mathematical optimization to reconstruct hyperspectral images according to prior knowledge. Current deep learning based methods achieve pleasant results. But fully learned deep learning methods lack interpretability, and model-based deep learning methods cannot achieve pleasant performance. In this paper, we propose a novel HSI reconstruction framework named Refinement Boosted and Attention Guided Tensor FISTA(Fast Iterative Shrinkage-Thresholding Algorithm)-Net (ReAttFISTA-Net), which combines model-based deep learning and fully learned deep learning reconstruction strategies. In this framework, we introduces Attention Guided Fusion Mechanism which enhances spatial-spectral information, refinement sub-network and auxiliary loss terms to improve the reconstruction performance. Extensive experimental results show that the proposed reconstruction algorithm outperforms the state-of-the-art algorithms on both simulation and real-world datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布布完成签到,获得积分10
1秒前
咩咩羊发布了新的文献求助10
1秒前
2秒前
BowieHuang应助buno采纳,获得30
3秒前
4秒前
4秒前
琢钰发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
合成不出来啊完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
9秒前
悬铃木发布了新的文献求助30
9秒前
11秒前
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
eric888应助科研通管家采纳,获得100
11秒前
元谷雪应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得20
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
wangqianyu发布了新的文献求助10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
成就凡双应助科研通管家采纳,获得10
12秒前
eric888应助科研通管家采纳,获得100
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
元谷雪应助科研通管家采纳,获得10
12秒前
成就凡双应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
侯总应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
彩色发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527