Tool wear identification and prediction method based on stack sparse self-coding network

刀具磨损 人工神经网络 过程(计算) 机械加工 堆栈(抽象数据类型) 计算机科学 鉴定(生物学) 平滑的 编码(社会科学) 人工智能 数据挖掘 工程类 计算机视觉 机械工程 数学 植物 生物 统计 操作系统 程序设计语言
作者
Yiyuan Qin,Xianli Liu,Caixu Yue,Mingwei Zhao,Xudong Wei,Lihui Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:68: 72-84 被引量:51
标识
DOI:10.1016/j.jmsy.2023.02.006
摘要

In the process of metal cutting, the effective monitoring of tool wear is of great significance to ensure the machining quality of parts. Aiming at the problem of tool wear monitoring, a tool wear recognition and prediction method based on stack sparse self-coding network is proposed. This method can simplify the establishment process of monitoring model, monitor the tool wear according to different task requirements, and guide the tool replacement in the actual cutting process. Firstly, unsupervised K-means clustering is used to divide the tool wear stage, and the feature set is marked. Secondly, the parameters of stack sparse self-coding network layer are determined by trial, and the sensitive features that can reflect the tool wear process are obtained. Finally, the tool wear identification model of stack sparse self-encoder and the tool wear prediction model of BP neural network are established respectively, and the smoothing correction method is used to further improve the prediction accuracy. The experimental results show that the established tool wear identification and prediction model can accurately monitor the tool wear state and wear amount, and has a certain reference value for efficient tool change in the actual metal cutting process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助lemon采纳,获得10
刚刚
刚刚
Owen应助半夏采纳,获得10
2秒前
鲨鱼辣椒发布了新的文献求助10
2秒前
迟到虞姬发布了新的文献求助10
2秒前
2秒前
3秒前
今后应助欢喜的跳跳糖采纳,获得10
4秒前
6秒前
大模型应助wucl1990采纳,获得10
6秒前
7秒前
8秒前
9秒前
赘婿应助医大好学生采纳,获得10
10秒前
yzz完成签到,获得积分20
11秒前
11秒前
CodeCraft应助HHHSean采纳,获得30
11秒前
张鹏程发布了新的文献求助10
12秒前
王九八发布了新的文献求助10
12秒前
擦撒擦擦完成签到,获得积分10
12秒前
ybmdyr完成签到,获得积分20
12秒前
99v587完成签到,获得积分10
13秒前
13秒前
13秒前
半夏发布了新的文献求助10
14秒前
qianqian发布了新的文献求助10
14秒前
Or1ll完成签到,获得积分10
15秒前
pluto应助苏雅霏采纳,获得10
16秒前
16秒前
科研dog发布了新的文献求助10
17秒前
钫人完成签到,获得积分10
17秒前
wucl1990发布了新的文献求助10
17秒前
思源应助Atlantic采纳,获得10
19秒前
20秒前
彭于彦祖应助绍兴采纳,获得20
22秒前
香蕉觅云应助santiago采纳,获得10
22秒前
华仔应助葡萄柚绿茶采纳,获得10
23秒前
感动忆霜完成签到,获得积分20
23秒前
wucl1990完成签到,获得积分20
23秒前
隐形曼青应助优雅狗采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371