材料科学
胶粘剂
复合材料
环氧树脂
热稳定性
粘接
聚合物
复合数
玻璃化转变
韧性
抗剪强度(土壤)
化学工程
图层(电子)
土壤水分
土壤科学
环境科学
工程类
作者
Linda Zhao,Xin Xu,Wanbao Xiao,Hongfeng Li,Hao Feng,Changwei Liu,Yingjie Qiao,Xuefeng Bai,Dezhi Wang,Chengtun Qu
出处
期刊:Polymers
[MDPI AG]
日期:2023-03-14
卷期号:15 (6): 1436-1436
被引量:2
标识
DOI:10.3390/polym15061436
摘要
Bismaleimide (BMI) resin-based structural adhesives have excellent heat resistance, with important applications demonstrated in the bonding of high-temperature BMI composites. In this paper, we report an epoxy-modified BMI structural adhesive with excellent properties for bonding BMI-based CFRP. We prepared the BMI adhesive using epoxy-modified BMI as the matrix and PEK-C and core–shell polymers as synergistic tougheners. We found that the epoxy resins improve the process and bonding properties of BMI resin but slightly reduce thermal stability. PEK-C and core–shell polymers synergistically improve the toughness and bonding performances of the modified BMI adhesive system and allow the maintenance of heat resistance. The optimized BMI adhesive exhibits excellent heat resistance, with a high glass transition temperature of 208.6 °C and a high thermal degradation temperature of 425.4 °C. Most importantly, the optimized BMI adhesive exhibits satisfactory intrinsic bonding and thermal stability. It has a high shear strength of 32.0 MPa at room temperature and up to 17.9 MPa at 200 °C. The BMI adhesive-bonded composite joint has a high shear strength of 38.6 and 17.3 MPa at room temperature and 200 °C, respectively, indicating effective bonding and excellent heat resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI