A systematic review of research on speech-recognition chatbots for language learning: Implications for future directions in the era of large language models

聊天机器人 计算机科学 语言习得 心理学 自然语言处理 数学教育
作者
Jaeho Jeon,Seongyong Lee,Seongyune Choi
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:32 (8): 4613-4631 被引量:62
标识
DOI:10.1080/10494820.2023.2204343
摘要

Chatbot research has received growing attention due to the rapid diversification of chatbot technology, as demonstrated by the emergence of large language models (LLMs) and their integration with automatic speech recognition. However, among various chatbot types, speech-recognition chatbots have received limited attention in relevant research reviews, despite their increasing potential for language learning. To fill this gap, 32 empirical studies on speech-recognition chatbots for language learning were reviewed. The following information was reviewed for each study: basic publication information, research focus, location of chatbot use, methodology, group design format, participant information, intervention duration, target language, device type adopted, and chatbot role. An upward trend in research quantity starting in 2020 was identified, which accelerated exponentially in 2022. College students were more likely than other groups to be involved in research, and English as a second or foreign language was the most common target language. Most studies focused on participants' perceptions of chatbots and the degree to which using chatbots helped them develop their speaking or listening proficiency. Methodologically, single-chatbot design using mixed methods was the most common design format, and most studies were conducted for more than one month in laboratory or classroom settings. Conventional mobile devices, such as smartphones, tablet PCs, and smart speakers without a screen, were the most frequently adopted device types. The chatbots' most common role was as conversational partner. A detailed discussion of these results and their implications for future research on speech-recognition chatbots, particularly regarding the use of LLM-powered chatbots, is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助丰富的土豆采纳,获得10
2秒前
优雅的延恶完成签到,获得积分20
3秒前
YB96发布了新的文献求助10
3秒前
5秒前
5秒前
充电宝应助温婉的夏烟采纳,获得200
5秒前
ruyunlong发布了新的文献求助10
5秒前
FashionBoy应助nn采纳,获得10
7秒前
在下雨发布了新的文献求助10
7秒前
Orange应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
勤劳冰烟应助科研通管家采纳,获得10
10秒前
风清扬应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
12秒前
所所应助优雅冰淇淋采纳,获得10
12秒前
12秒前
13秒前
HHHHTTTT完成签到,获得积分10
13秒前
yznfly应助爱听歌的老九采纳,获得30
14秒前
15秒前
AEROU完成签到 ,获得积分10
17秒前
健忘芷珊完成签到,获得积分10
18秒前
shinn发布了新的文献求助10
19秒前
彭于晏应助HK采纳,获得10
19秒前
想吃糖葫芦完成签到 ,获得积分10
19秒前
秦萍发布了新的文献求助10
19秒前
桐桐应助专注的可乐采纳,获得10
20秒前
20秒前
20秒前
20秒前
一一发布了新的文献求助10
21秒前
21秒前
sarah发布了新的文献求助10
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303