A systematic review of research on speech-recognition chatbots for language learning: Implications for future directions in the era of large language models

聊天机器人 计算机科学 语言习得 心理学 自然语言处理 数学教育
作者
Jaeho Jeon,Seongyong Lee,Seongyune Choi
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:32 (8): 4613-4631 被引量:62
标识
DOI:10.1080/10494820.2023.2204343
摘要

Chatbot research has received growing attention due to the rapid diversification of chatbot technology, as demonstrated by the emergence of large language models (LLMs) and their integration with automatic speech recognition. However, among various chatbot types, speech-recognition chatbots have received limited attention in relevant research reviews, despite their increasing potential for language learning. To fill this gap, 32 empirical studies on speech-recognition chatbots for language learning were reviewed. The following information was reviewed for each study: basic publication information, research focus, location of chatbot use, methodology, group design format, participant information, intervention duration, target language, device type adopted, and chatbot role. An upward trend in research quantity starting in 2020 was identified, which accelerated exponentially in 2022. College students were more likely than other groups to be involved in research, and English as a second or foreign language was the most common target language. Most studies focused on participants' perceptions of chatbots and the degree to which using chatbots helped them develop their speaking or listening proficiency. Methodologically, single-chatbot design using mixed methods was the most common design format, and most studies were conducted for more than one month in laboratory or classroom settings. Conventional mobile devices, such as smartphones, tablet PCs, and smart speakers without a screen, were the most frequently adopted device types. The chatbots' most common role was as conversational partner. A detailed discussion of these results and their implications for future research on speech-recognition chatbots, particularly regarding the use of LLM-powered chatbots, is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助法鱿科采纳,获得30
1秒前
1秒前
2秒前
3秒前
小菜鸡完成签到,获得积分20
3秒前
3秒前
李爱国应助Wang采纳,获得10
3秒前
Xiny发布了新的文献求助10
3秒前
空城发布了新的文献求助10
4秒前
像风一样完成签到,获得积分20
4秒前
Jerry完成签到,获得积分10
4秒前
橙子发布了新的文献求助10
5秒前
微笑的冰烟应助秋er采纳,获得10
5秒前
幸福的初晴发布了新的文献求助200
6秒前
Mingda发布了新的文献求助10
7秒前
Jerry发布了新的文献求助10
7秒前
落寞服饰发布了新的文献求助10
8秒前
Starveg完成签到,获得积分10
8秒前
小菜鸡发布了新的文献求助10
8秒前
小沈完成签到,获得积分10
8秒前
大个应助yw采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
haix应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
彭于彦祖应助科研通管家采纳,获得20
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384455
关于积分的说明 10535108
捐赠科研通 3104971
什么是DOI,文献DOI怎么找? 1709892
邀请新用户注册赠送积分活动 823415
科研通“疑难数据库(出版商)”最低求助积分说明 774059