A novel engine and battery coupled thermal management strategy for connected HEVs based on switched model predictive control under low temperature

模型预测控制 电池(电) 汽车工程 能源管理 控制器(灌溉) 燃料效率 电池组 MATLAB语言 计算机科学 工程类 控制工程 控制理论(社会学) 功率(物理) 控制(管理) 能量(信号处理) 农学 统计 物理 数学 量子力学 人工智能 生物 操作系统
作者
Kai Li,Hong Chen,Shengyan Hou,Lars I. Eriksson,Jinwu Gao
出处
期刊:Energy [Elsevier]
卷期号:278: 127726-127726 被引量:5
标识
DOI:10.1016/j.energy.2023.127726
摘要

Under a low-temperature environment, electric vehicles face serious environmental adaptability problems, and efficient vehicle thermal management strategies are urgently needed. This paper presents a novel engine–battery coupled thermal management strategy for connected hybrid electric vehicles (HEVs). An improved system structure for an engine–battery coupled thermal management system (engine–battery CTMS) is designed to avoid unnecessary heat loss. The control requirements of the engine–battery CTMS include minimum engine fuel consumption, minimum power battery aging damage and minimum system energy consumption, which constitutes a multi-objective optimal control problem in a finite time domain. Based on model predictive control (MPC) theory, a switched nonlinear MPC (NMPC) control strategy is proposed to solve the optimal control problem of the complex coupled multi-input multi-output system. To verify the effectiveness of the proposed strategy, three comparative experiments of the centralized NMPC-based and rule-based methods combined with the improved system structure and the unimproved system structure are designed. The results of the cosimulation experiment between MATLAB/Simulink and AMEsim under various driving cycles and different ambient temperatures show that the improved structure and switched control strategy confer great advantages in reducing the controller computation burden, engine fuel consumption, and power battery aging damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ufuon发布了新的文献求助10
1秒前
momo完成签到,获得积分10
2秒前
赘婿应助二二二采纳,获得10
2秒前
JamesPei应助HongJiang采纳,获得10
2秒前
clarkq完成签到,获得积分10
3秒前
orixero应助LIU采纳,获得10
3秒前
经法发布了新的文献求助10
3秒前
不吃橘子完成签到,获得积分10
3秒前
Cheryy完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
ding应助哈哈哈哈采纳,获得10
5秒前
Draeck发布了新的文献求助10
5秒前
kingwhitewing发布了新的文献求助10
5秒前
6秒前
clarkq发布了新的文献求助10
6秒前
6秒前
GGZ完成签到,获得积分10
6秒前
15860936613完成签到 ,获得积分10
6秒前
可爱的函函应助a方舟采纳,获得10
6秒前
7秒前
ee关闭了ee文献求助
7秒前
7秒前
8秒前
Hungrylunch给woshiwuziq的求助进行了留言
8秒前
传奇3应助cruise采纳,获得10
8秒前
艺玲发布了新的文献求助10
8秒前
8秒前
我是老大应助sun采纳,获得10
9秒前
柔弱煎饼完成签到,获得积分10
9秒前
SY发布了新的文献求助10
9秒前
暗能量完成签到,获得积分10
9秒前
刘星星完成签到,获得积分10
9秒前
科研通AI5应助yan采纳,获得10
10秒前
蒋念寒发布了新的文献求助10
10秒前
zyp完成签到,获得积分10
10秒前
dldddz完成签到,获得积分10
10秒前
二二二完成签到,获得积分20
10秒前
动听导师发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678