吸附
介孔材料
介孔二氧化硅
化学工程
材料科学
热液循环
介孔有机硅
弗伦德利希方程
水热合成
生物量(生态学)
硅
选择性
无机化学
化学
有机化学
催化作用
地质学
冶金
工程类
海洋学
作者
Shihai Xu,Chuncai Zhou,Hongxia Fang,Wenrui Zhu,Jiaqian Shi,Guijian Liu
标识
DOI:10.1016/j.envres.2023.116070
摘要
It is possible to achieve high-value utilization of solid wastes and lower the cost of mesoporous silica synthesis by synthesizing mesoporous silica from solid wastes. In this study, silica was extracted using the alkali fusion method using biomass ash as the starting material. Biomass ash based mesoporous silica was successfully prepared by hydrothermal method with silicon extract solution as silicon source. The optimum conditions for preparation were determined as follows: addition of cetyltrimethylammonium bromide was 0.45g, hydrothermal temperature was 120 °C, hydrothermal time was 24h. The prepared mesoporous silicon was systematically characterized, and the results showed that high surface area (495 m2/g) and ordered pore structure appeared in the synthesized mesoporous silica materials. The synthesized mesoporous silica showed excellent CO2 adsorption performance (0.749 mmol/g) at 25 °C and 1 bar. According to the calculation of adsorption isotherm and thermodynamics, non-linear Freundlich model can fit the adsorption isotherm better and the adsorption heat of mesoporous silica is less than 20 kJ/mol, which belongs to physical adsorption. After five cycles of CO2 adsorption, the adsorption property was still above 90%, and the CO2/N2 adsorption selectivity reached 396.6, showing good regeneration performance and adsorption selectivity. This research can provide a new possibility for the high-value exploitation of biomass ash and reducing the cost of synthetic mesoporous silica.
科研通智能强力驱动
Strongly Powered by AbleSci AI