Dynamic Confidence-Aware Multi-Modal Emotion Recognition

计算机科学 稳健性(进化) 人工智能 情绪识别 情态动词 模式 机器学习 模式识别(心理学) 过程(计算) 模态(人机交互) 社会科学 生物化学 化学 社会学 高分子化学 基因 操作系统
作者
Qi Zhu,Chenghao Zheng,Zheng Zhang,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/taffc.2023.3340924
摘要

Multi-modal emotion recognition has attracted increasing attention in human-computer interaction, as it extracts complementary information from physiological and behavioral features. Compared to single modal approaches, multi-modal fusion methods are more susceptible to uncertainty in emotion recognition, such as heterogeneity and inconsistent predictions across different modalities. Previous multi-modal approaches ignore systematic modeling of uncertainty in fusion and revelation of dynamic variations in emotion process. In this paper, we propose a dynamic confidence-aware fusion network for robust recognition of heterogeneous emotion features, including electroencephalogram (EEG) and facial expression. First, we develop a self-attention based multi-channel LSTM network to preliminarily align the heterogeneous emotion features. Second, we propose a confidence regression network to estimate true class probability (TCP) on each modality, which helps explore the uncertainty at modality level. Then, different modalities are weighted fused according to above two types of uncertainty. Finally, we adopt self-paced learning (SPL) mechanism to further improve the model robustness by alleviating negative effect from the hard learning samples. The experimental results on several multi-modal emotion datasets demonstrate the proposed method outperforms the state-of-the-art methods in emotion recognition performance and explicitly reveals the dynamic variation of emotion with uncertainty estimation. Our code is available at:
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎的向南完成签到,获得积分10
刚刚
刚刚
PDIF-CN2发布了新的文献求助10
1秒前
yznfly应助Emma采纳,获得30
1秒前
COSMAO关注了科研通微信公众号
2秒前
mx应助大美女采纳,获得10
2秒前
Mira发布了新的文献求助10
2秒前
外向的易蓉完成签到 ,获得积分10
2秒前
ly发布了新的文献求助10
3秒前
炸炸呦完成签到,获得积分10
3秒前
所所应助现代雪晴采纳,获得10
3秒前
4秒前
专一的鸡翅完成签到 ,获得积分10
4秒前
5秒前
小马甲应助善善采纳,获得10
5秒前
5秒前
不知名的呆毛完成签到 ,获得积分10
7秒前
王九八发布了新的文献求助10
7秒前
科目三应助谨慎的向南采纳,获得10
8秒前
Hello应助等待的若云采纳,获得10
8秒前
浏阳河发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
bai关闭了bai文献求助
11秒前
13秒前
吗喽完成签到,获得积分10
13秒前
13秒前
默默访风完成签到,获得积分10
14秒前
Danaus发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
时飞发布了新的文献求助10
15秒前
15秒前
JamesPei应助重要墨镜采纳,获得10
15秒前
wonhui发布了新的文献求助10
16秒前
17秒前
核桃应助m(_._)m采纳,获得30
17秒前
善学以致用应助枫树狐狸采纳,获得10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371